find the point x-axis which is equidistant form (2,-5) and (-2,9)
Answers
Answered by
6
Answer:
Let a point on X-axis A(a,0).
B(–2,9) and C(2,–5) are equidistant from point A.
therefore AB=AC.
The distance between (x1,y1) and (x2,y2)=√x2-x1)²+ (y2-y1)²
The distance between A(a,0) and B(-2,9)
AB=√(-2-a)²(9-0)²
=√(-2-a)²+(9)²
=√[–(2+a)]²+81
=√(2+a)²+81 units.
The distance between A(a,0) and C(2,-5)
AC=√(2-a)²+(-5-0)²
=√(2-a)²+(-5)²
=√(2-a)²+25 units.
By problem,
AB=AC
→ √(2+a)²+81=√(2-a)²+25
squaring on both sides
(2+a)²+81=(2-a)²+25
(2)²+(a)²+2(2)(a)+81=(2)²+(a)²-2(2)(a)
4+a²+4a+81=4 +a²-4a
4a+4a=25-81
8a=-56
a=-56/8
a=-7
Therefore the required point on X-axis is A(-7,0).
hope it works..........................................™✌️✌️
Similar questions