Economy, asked by 7TeeN, 10 months ago

Find the points of inflexion for
 f(x) = (sinx + cosx) {e}^{x} \: where \: \\ belongs \: to \: 0 \: to \: 2\pi \:
Discuss the concavity and convexity.​

Answers

Answered by MRsteveAustiN
0

Differentiating To Find concavity

 f(x) = (sinx + cosx) {e}^{x} \: where \: \\ belongs \: to \: 0 \: to \: 2\pi \:

 f'(x) = (cosx - sinx) {e}^{x}+(sinx + cosx) {e}^{x}

 f'(x) = (2cosx) {e}^{x}

 f"(x) = (-2sinx) {e}^{x} +(2cosx) {e}^{x}

 f''(x) = (cosx-sinx)2 {e}^{x}

</p><p>&lt;html&gt;</p><p>&lt;head&gt;</p><p>&lt;style&gt;</p><p>div.a {</p><p>  text-decoration-line: underline;</p><p>  text-decoration-style: solid;</p><p>}</p><p></p><p>div.b {</p><p>  text-decoration-line: underline;</p><p>  text-decoration-style: wavy;</p><p>}</p><p></p><p>div.c {</p><p>  text-decoration-line: underline;</p><p>  text-decoration-style: double;</p><p>}</p><p></p><p>div.d {</p><p>  text-decoration-line: overline underline;</p><p>  text-decoration-style: wavy;</p><p>}</p><p>&lt;/style&gt;</p><p>&lt;/head&gt;</p><p>&lt;body&gt;</p><p></p><p>&lt;h1&gt;Heading&lt;/h1&gt;</p><p></p><p>&lt;div class="a"&gt;text1&lt;/div&gt;</p><p>&lt;br&gt;</p><p></p><p>&lt;div class="b"&gt;Text2&lt;/div&gt;</p><p>&lt;br&gt;</p><p></p><p>&lt;div class="c"&gt;T3&lt;/div&gt;</p><p>&lt;br&gt;</p><p></p><p>&lt;div class="d"&gt;T4.&lt;/div&gt;</p><p></p><p></p><p></p><p>&lt;/body&gt;</p><p>&lt;/html&gt;</p><p>

\huge\bold{\mathcal{\blue{T}\pink{H}\green{A}\red{N}{K}\blue{S}}}

Answered by Aɾꜱɦ
12

\huge\underline{\underline{\mathfrak{\purple{Answer-}}}}

f(x)=(sinx+cosx)e

x

where

belongsto0to2π

f'(x) = (cosx - sinx) {e}^{x}+(sinx + cosx) {e}^{x}f

(x)=(cosx−sinx)e

x

+(sinx+cosx)e

x

f'(x) = (2cosx) {e}^{x}f

(x)=(2cosx)e

x

f"(x) = (-2sinx) {e}^{x} +(2cosx) {e}^{x}f"(x)=(−2sinx)e

x

+(2cosx)e

x

f''(x) = (cosx-sinx)2 {e}^{x}f

′′

(x)=(cosx−sinx)2e

x

Similar questions