Math, asked by salonisharmasharma58, 9 months ago

Find the points on the curve y = x3 – 2x2 - x
where the tangents are parallel to 3x-y+1=0.
Find the equations of the tangents to the
curve x2 + y2 – 2x - 4y + 1= 0 which are
parallel to the X-axis.
'ind the equations of the normals to the
irve 3x2 - y2 = 8, which are parallel to the​

Answers

Answered by prabhleen643
19

hope it helps you mate.

Attachments:
Answered by amansharma264
16

1) = Find the point on the curve y = x³ - 2x² - x

where the tangent are parallel to 3x - y + 1 = 0

 \sf \to \: 3x - y + 1 = 0 \\  \\  \sf \to \: y \:  = 3x + 1 = 0 \\  \\  \sf \to \:  \dfrac{dy}{dx}   = 3 = slope \\  \\  \sf \to \:   \dfrac{dy}{dx}  = 3 {x}^{2}  - 4x - 1 = 0 \\  \\  \sf \to \:  \frac{dy}{dx} = 3 {x}^{2}  - 4x - 1 = 3 \\  \\  \sf \to \:  \frac{dy}{dx}   = 3 {x}^{2} - 4x - 4 = 0 \\  \\  \sf \to \: 3 {x}^{2}  - 6x + 2x - 4 = 0 \\  \\  \sf \to \: 3x(x - 2) + 2(x - 2) = 0 \\  \\  \sf \to \: (3x + 2)(x - 2) = 0 \\  \\  \sf \to \: x \:  =  \frac{ - 2}{3}  \: and \: x \:  = 2

 \sf \to \: put \: the \: value \: of \: x \: in \: equation \\  \\  \sf \to \: when \: x \:  =  \frac{ - 2}{3} = y =  \frac{ ( - 2) {}^{3} }{(3) {}^{3} } - 2 \frac{( - 2) {}^{2} }{(3) {}^{2} }  -  \frac{( - 2)}{(3)}  = 0 \\  \\  \sf \to \: y \:  =  \dfrac{ - 14}{27} \\  \\  \sf \to \: when \: x \:  = 2 \\  \\  \sf \to \: y \:  = (2) {}^{3} - 2(2) {}^{2} - 2  \\  \\  \sf \to \: y \:  =  - 2 \\  \\  \sf \to \:  \green{{ \underline{point \: on \: the \: curve \:  = ( \frac{ - 2}{3}  \: , \frac{ - 14}{27}) \:  \: and \:  \:  \: (2 \:,  \:  - 2) }}}

2) = find the equation of tangents to the curve

=> x² + y² - 2x - 4y + 1 = 0 which are parallel

to the x-axis axis

 \sf \to \: parallel \: to \:  x \: axis \:  \\  \\  \sf \to \: differentiate \: w.r.t \:  y \\  \\  \sf \to \: equation \:  =  {x}^{2}  +  {y}^{2} - 2x - 4y  + 1 = 0 \\  \\  \sf \to \: 2x \dfrac{dy}{dx} + 2y - 2 \frac{dy}{dx} - 4 = 0 \\  \\  \sf \to \: (2x - 2) \dfrac{dy}{dx}  = 4 - 2y \\  \\  \sf \to \:  \dfrac{dy}{dx} =  \dfrac{2x - 2}{4 - 2y} \\  \\  \sf \to \: 2x - 2 = 0 \\  \\  \sf \to \: x \:  = 1

 \sf \to \: put \: the \: value \: of \: x \:  = 1 \: in \: equation \:  \\  \\  \sf \to \: y = (1) {}^{2} +  {y}^{2}  - 2(1) - 4y + 1 = 0 \\  \\  \sf \to \: y = 1 +  {y}^{2}  - 2 - 4y + 1 = 0 \\  \\  \sf \to \:  {y}^{2}  - 4y = 0 \\  \\  \sf \to \: y(y - 4) = 0 \\  \\  \sf \to \: y \:  = 0 \:  \:  \: and \:  \: y \:  = 4 \\  \\  \sf \to points \: are \: (1 \: 0) \: and \: (1 \: 4) \\  \\  \sf \to \: equation \: of \: tangent \: (y -  y_{1}) =  \frac{dy}{dx}(x -  x_{1}) \\  \\  \sf \to \: (y - 0) = 0 \\  \\  \sf \to \: y \:  = 0 \\  \\  \sf \to \: (y - 1) = 0 \\  \\  \sf \to \: y \:  = 1

3) = Find the equation of the normal lines to

the curve 3x² - y = 8 which are parallel to

the line x + 3y = 4

 \sf \to \: equation \: 3 {x}^{2}  -  {y}^{2}  = 8 \\  \\  \sf \to \: differentiate \: w.r.t \: x \\  \\  \sf \to \: 6x - 2y \frac{dy}{dx}  = 0 \\  \\  \sf \to \: slope \: of \: tangent \:  =  \frac{3x}{y}  \\  \\  \sf \to \: slope \: of \: normal \:  =  \frac{ - y}{3x}  \\  \\  \sf \to \: slope \:  =  \frac{ - 1}{3}  \\  \\  \sf \to \:  \frac{ - y}{3x}  =  \frac{ - 1}{3}  \\  \\  \sf \to \: y \:  = x \\  \\  \sf \to \: 3 {x}^{2}  -  {x}^{2}  = 8 \\  \\  \sf \to \: 2 {x}^{2}  = 8 \\  \\  \sf \to \:  {x}^{2}  = 4 \\  \\  \sf \to \: x \:  = 2 \:  \: and \: x \:  =  - 2 \\  \\  \sf \\  \to \: when \: x \:  = 2 \: and \: y \:  = 2 \\  \\  \sf \to \: when \: x \:  =  - 2 \: and \: y \:  =  - 2 \\  \\  \sf \to \: equation \: of \: normal

=> ( y - 2 ) = -1/3 ( x - 2 )

=> 3y - 6 = -x + 2

=> 3y + x = 8

=> ( y + 2 ) = -1/3 ( x + 2 )

=> 3y + 6 = - x - 2

=> 3y + x = -8


Anonymous: Nice ◉‿◉
Similar questions