Math, asked by jtsydudjgfjf53991, 6 months ago

Find the points on the y-axis which is equidistant from points 6,5and-4,3

Answers

Answered by mysticd
2

 Let \: the \: Coordinates \: of \: the \: points

 on \:the \:Y-axis \: which \:is \: equidistant \\from \: A(6,5) = (x_{1},y_{1}) \\ and \: B(-4,3) = (x_{2},y_{2}) \:is \: P( 0, y )

 PA = PB

 \implies PA^{2} = PB^{2}

 \implies ( x_{1} - 0 )^{2} + ( y_{1} - y)^{2} = ( x_{2} - 0 )^{2} + ( y_{2} - y)^{2}

 \implies 6^{2}+(5-y)^{2} =(-4)^{2} + (3-y)^{2}

 \implies 36 + 5^{2} - 2\times 5\times y = 16+3^{2}-2\times 3\times y

 \implies 36 + 25- 10 y = 16+9-6 y

 \implies 61 - 10 y = 25-6 y

 \implies - 10 y +6y= 25-61

 \implies - 4y = -36

 \implies y = \frac{-36}{-4}

 \implies y = 9

Therefore.,

 \red{ Coordinates \: of\: required \:point } \green { = ( 0 , 9 ) }

•••♪

Similar questions