Math, asked by prakashmurmuprakashm, 2 months ago

Find the points on z-axis which are at a distance √21 from the point (1, 2, 3).​

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Let assume that the point on z - axis be P (0, 0, z).

Let assume that the point (1, 2, 3) be represented as A.

According to statement,

\rm :\longmapsto\:AP =  \sqrt{21}

\rm :\longmapsto\: {AP}^{2}  = 21

\rm :\longmapsto\: {(0 - 1)}^{2} +  {(0 - 2)}^{2} +  {(z - 3)}^{2}  = 21

\rm :\longmapsto\: 1 + 4+  {(z - 3)}^{2}  = 21

\rm :\longmapsto\: 5+  {(z - 3)}^{2}  = 21

\rm :\longmapsto\: {(z - 3)}^{2}  = 21 - 5

\rm :\longmapsto\: {(z - 3)}^{2}  = 16

\rm :\longmapsto\: {(z - 3)}^{2}  =  {4}^{2}

\rm :\longmapsto\:z - 3 \:  =  \:  \pm \: 4

Therefore, the point on z - axis be (0, 0, 4) and (0, 0, - 4).

‐--------------------------------------------------------------

Distance Formula :-

Distance between two points A and B is given by

\sf \:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} + {(z_2-z_1)}^{2} }

Similar questions