Find the points (x, y) on the unit circle, at which the product xy is maximum or minimum
Answers
Answered by
1
unit circle: x² + y² = 1
y = √(1 - x²)
Product P = x y = x √(1-x²)
dP/dx = √(1-x²) - x * x / √(1-x²)
= (1 - 2 x²) / √(1 - x²) = 0 => x = + 1/√2 or -1/√2
d²P/dx² = [ √(1-x²) (-4x) - (1- 2x²) ( -x/√(1-x²) ) ] / (1 - x²)
= [ -4 + 4 x³ + x - 2 x³ ] / (1-x²)³/²
= [ 2 x³ + x - 4 ] / (1-x²)³/²
As |x| < 1, Numerator is negative. Hence P = xy is maximum at x = 1/√2
Answer: x = 1/√2 , y = 1/√2 or x = -1/√2 , y = -1/√2
===========
Simpler way:
Let x = cosФ y = sinФ
Product = xy = sinФ cosФ = 1/2 * sin 2Ф
It is maximum for Ф = π/4 or 5π/4
So x = y = 1/√2 or x = y = -1/√2
y = √(1 - x²)
Product P = x y = x √(1-x²)
dP/dx = √(1-x²) - x * x / √(1-x²)
= (1 - 2 x²) / √(1 - x²) = 0 => x = + 1/√2 or -1/√2
d²P/dx² = [ √(1-x²) (-4x) - (1- 2x²) ( -x/√(1-x²) ) ] / (1 - x²)
= [ -4 + 4 x³ + x - 2 x³ ] / (1-x²)³/²
= [ 2 x³ + x - 4 ] / (1-x²)³/²
As |x| < 1, Numerator is negative. Hence P = xy is maximum at x = 1/√2
Answer: x = 1/√2 , y = 1/√2 or x = -1/√2 , y = -1/√2
===========
Simpler way:
Let x = cosФ y = sinФ
Product = xy = sinФ cosФ = 1/2 * sin 2Ф
It is maximum for Ф = π/4 or 5π/4
So x = y = 1/√2 or x = y = -1/√2
kvnmurty:
click on red heart thanks above pls
Similar questions