Find the points ( x, y ) on the unit circle, at which the product xy is maximum or minimum.
Answers
Answered by
2
unit circle: x² + y² = 1 with center at O(0,0)
Differentiating the above eq. wrt x: 2 x + 2 y y' = 0
y' = - x/y
P = x y
dP/dx = y + x y' = y - x² /y = (y² - x²) / y
or, (2 y² - 1 ) / y
dP/dx = 0 => y = +x or -x or y = +1/√2 or -1/√2
Hence points:
xy maximum at: (1/√2, 1/√2) , (-1/√2 , -1/√2)
xy minimum at: (1/√2, -1/√2), (-1/√2 , 1/√2)
Differentiating the above eq. wrt x: 2 x + 2 y y' = 0
y' = - x/y
P = x y
dP/dx = y + x y' = y - x² /y = (y² - x²) / y
or, (2 y² - 1 ) / y
dP/dx = 0 => y = +x or -x or y = +1/√2 or -1/√2
Hence points:
xy maximum at: (1/√2, 1/√2) , (-1/√2 , -1/√2)
xy minimum at: (1/√2, -1/√2), (-1/√2 , 1/√2)
kvnmurty:
click on red heart thanks
Similar questions