Math, asked by atharvrathod14, 11 months ago

find the polar coordinates of the point whose cartesian coordinates are (3,3)​

Answers

Answered by BendingReality
47

Answer:

(  3 √ 2 , π / 4 ) .

Step-by-step explanation:

Given :

Cartesian coordinate ( 3 , 3 ) .

Here x=  3 and y = 3

For polar coordinate ( r , Ф )

r = √ ( x² + y² )

r = √ ( 9 + 9 )

r = 3 √ 2

Now :

Ф = tan⁻¹ ( y / x )

Ф = tan⁻¹ ( 3 / 3 )

Ф = tan⁻¹ ( 1 )

Ф = π / 4 .

Therefore , polar coordinate is (  3 √ 2 , π / 4 ) .

Answered by hukam0685
3

The polar coordinates of the point whose cartesian coordinates are (3,3) are \bf \red{3\sqrt2 \angle 45^{\circ}}

Given:

  • Cartesian coordinates.
  • (3,3)

To find:

  • find the polar coordinates.

Solution:

Concept\formula: Polar coordinates are given by r \angle \theta

Where,

\bf r =   \sqrt{{x}^{2}  +  {y}^{2}}  \\

and

 \bf \theta =  {tan}^{ - 1} \left( \frac{y}{x}\right) \\

Step 1:

Find r from (x,y)=(3,3) with the help of formula.

r =  \sqrt{ {3}^{2} +  {3}^{2}  }  \\

or

r =  \sqrt{9 + 9}  \\

or

r =  \sqrt{18}  \\

or

\bf r = 9 \sqrt{2}  \\

Step 2:

Find the angle.

  \theta =  {tan}^{ - 1} \left( \frac{3}{3}\right ) \\

or

  \theta =  {tan}^{ - 1}(1) \\

or

\bf \theta = 45^{ \circ}  \\

Thus,

Polar coordinates of point are \bf 3\sqrt2 \angle 45^{\circ}.

___________________________

Learn more:

1) find the polar coordinates whose cartesian coordinates are (0,1/2)

https://brainly.in/question/21576263

2) the polar coordinates of the point whose cartesian coordinates are 1/√2 , -1/√2

https://brainly.in/question/39290092

Similar questions