Math, asked by dileshsarojkar, 9 months ago

find the polar coordinates whose cartesian coordinates are (0,1/2)​

Answers

Answered by pulakmath007
9

SOLUTION

TO DETERMINE

The polar coordinates whose cartesian coordinates are

 \displaystyle \sf{ \bigg(0 \: , \frac{1}{2}  \bigg)}

EVALUATION

Let (r, θ) be the polar coordinates of the point

Then

 \displaystyle \sf{ 0  = r \cos \theta \: \: , \frac{1}{2}  =r \sin \theta}

Now Squaring and adding we get

 \displaystyle \sf{  {r}^{2}  =  \frac{1}{4} }

 \displaystyle \sf{   \implies \: r  =  \frac{1}{2} }

Again

 \displaystyle \sf{  tan \theta =  \frac{ \displaystyle \sf{ \frac{1}{2}} }{0} }

 \displaystyle \sf{   \implies \: tan \theta =   \infty }

 \displaystyle \sf{   \implies \: tan \theta =   \infty }

 \displaystyle \sf{   \implies  \theta =    \frac{\pi}{2}  }

Hence the required polar coordinates

 \displaystyle \sf{ \bigg( \frac{1}{2} \: , \frac{\pi}{2}  \bigg)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. express 3πc/4 in centesimal system

https://brainly.in/question/33071365

2. if sin theta =√3/2,cos theta=-1/2 then theta lies in

https://brainly.in/question/31225531

Similar questions