Math, asked by amoghsingrajput, 1 year ago

find the polar form of. 1÷1+i and 1+7i÷(2-i)square​

Answers

Answered by IamIronMan0
0

Answer:

1.

 \frac{1}{1 + i}  \times  \frac{1 - i}{1 - i}   =  \frac{1 - i}{ {1}^{2}  -  {i}^{2} }  =  \frac{1 - i}{2}  \\  \\  \frac{1}{ \sqrt{2} } ( \frac{1}{ \sqrt{2} }  -  \frac{1}{ \sqrt{2} } i) \\  \\  =  \frac{1}{ \sqrt{2} } ( \cos( \frac{7\pi}{4} )  + i \sin( \frac{7\pi}{4} ) )

2.

 \frac{1 + 7i}{(2 - i) {}^{2} }  \\  \\  =  \frac{1 + 7i}{ {2}^{2}  +  {i}^{2} - 4i }  \\  \\  =  \frac{1 + 7i}{3 - 4i}  \times  \frac{3 + 4i}{3 + 4i}  \\  \\  =  \frac{3 + 4i + 21i - 28}{9 + 16}  \\  \\  =  \frac{25 + 25i}{25}  \\  \\  = 1 + i \\  \\  =  \sqrt{2} ( \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} } i) \\  \\  =  \sqrt{2} ( \cos( \frac{\pi}{4} ) + i \sin( \frac{\pi}{4} )  )

Attachments:
Similar questions