Math, asked by Anonymous, 8 days ago

Find the polar form of complex number.
z =  \dfrac{(2 \sqrt{3} - 1) + (2 +  \sqrt{3} )i}{4}

Answers

Answered by jotbhawan25
0

Answer:

May be thi is useful for you and please mark me brainlist and I will be sure to send you answers of the questions thank you have a nice day

Attachments:
Answered by XxitzZBrainlyStarxX
5

Question:-

Fund the polar form of complex number.

 \sf \large z = \dfrac{(2 \sqrt{3} - 1) + (2 + \sqrt{3} )i}{4}

Given:-

 \sf \large z = \dfrac{(2 \sqrt{3} - 1) + (2 + \sqrt{3} )i}{4}

To Find:-

  • The polar form of complex number.

Solution:-

The given complex number is,

 \sf \large z = \dfrac{(2 \sqrt{3} - 1) + (2 + \sqrt{3} )i}{4} .

On comparing with,

z = a + ib.

We have,

 \sf \large a + ib =  \frac{(2 \sqrt{3} - 1) }{4}  +  \frac{(2 +  \sqrt{3} )i}{4}

This gives,

 \sf \large a =  \frac{(2 \sqrt{3} -1) }{4}  \\  \\  \sf \large b =  \frac{(2 +  \sqrt{3} )}{4}

Therefore, we have

 \sf \large r {}^{2}  = a {}^{2}  + b {}^{2}

 \sf \large r {}^{2}  =  \frac{(2 \sqrt{3}  - 1) {}^{2} }{4 {}^{2} }  +  \frac{(2 +  \sqrt{3}) {}^{2}  }{4 {}^{2} }

 \sf \large r  {}^{2}   = \frac{(2 \sqrt{3} ) {}^{2} + (1) {}^{2}  - 2 \times 2 \sqrt{3}  \times 1 }{4 {}^{2} }  +  \frac{(2) {}^{2}  + ( \sqrt{3}) {}^{2}  + 2 \times 2 \times  \sqrt{3}  }{4 {}^{2} }

 \sf \large r {}^{2}  =  \frac{4 \times 3 + 1 - 4 \sqrt{3} }{4 {}^{2} }  +  \frac{4 + 3 + 4 \sqrt{3} }{4 {}^{2} }

 \sf \large r {}^{2}  =  \frac{12 + 1 - 4 \sqrt{3} + 7 + 4 \sqrt{3}  }{4 {}^{2} }

This gives,

 \sf \large r =  \sqrt{ \frac{20}{4 {}^{2} } }  \\  \\  \sf \large r =  \frac{2 \sqrt{5} }{4}  \\  \\  \sf \large r =  \frac{ \sqrt{5} }{2}  = 1.12

Now, as

 \sf \large  \theta = tan {}^{ - 1} ( \frac{b}{a} )

Substituting the values of a and b, we have

 \sf \large \theta = tan {}^{ - 1}  \bigg( \frac{ \frac{(2 +  \sqrt{3)} }{4} }{ \frac{(2 \sqrt{3} - 1) }{4} }  \bigg)

 \sf \large \theta = tan {}^{ - 1}  \bigg( \frac{(2 +  \sqrt{3} )}{(2 \sqrt{3}  - 1)}  \bigg)

 \sf \large \theta = tan {}^{ - 1}  \bigg( \frac{3.73}{2.46}  \bigg)

 \sf \large \theta = tan {}^{ - 1} (1.5)

 \sf \large \theta = 0.98

Thus we can write the given complex number in polar form as,

z = r (cosθ + i sinθ)

Substituting the value of r and theta, we have

 \sf \large z =  \frac{ \sqrt{5} }{2} (cos(0.98) + i \: sin(0.98))

 \sf \large z = 1.12(cos(0.98) + i \: sin(0.98))

Answer:-

 \sf \large \blue{z = 1.12(cos(0.98) + i \: sin(0.98)).}

Hope you have satisfied.

Similar questions