Math, asked by gokulskumar, 3 months ago

find the polar form of the complex number 1+I/1-i​

Answers

Answered by Ataraxia
119

Solution :-

Let,

 \sf z =  \dfrac{1 + i}{1 - i}

Let's write z in the form a + ib.

  :  \implies \sf z =  \dfrac{(1 + i) \times (1 + i)}{(1 - i) \times (1 + i)}

:  \implies \sf z =  \dfrac{ {(1 + i)}^{2} }{ {1}^{2} -  {i}^{2}  }

:  \implies \sf z =  \dfrac{ {1}^{2}  +  {i}^{2}  + 2i }{1 - ( -1)}

:  \implies \sf z =  \dfrac{1 - 1 + 2i}{1 + 1}

:  \implies \sf z =  \dfrac{2i}{2}

 :  \implies  \underline{\sf z = i}

 \bf \therefore z = 0 + i

We know ,

 \sf z = r(cos \theta + isin \theta)

Equating real and imaginary parts we get,

 \sf rcos \theta=0 \: , \: rsin \theta = 1

By squaring and adding we get,

 \sf r^{2}(cos^{2} \theta+ sin^{2} \theta = 0^{2}+1^{2}

 \sf r^{2} \times 1=  1

 \bf r=1

 \sf rcos \theta =0

 \implies \sf cos \theta =0

 \sf rsin \theta =1

  \implies\sf sin \theta =1

 \sf \therefore \theta = \dfrac{\pi}{2}

 \sf \theta  lies in 1st quadrant.

 \therefore\underline{\bf i=1 \left( cos \dfrac {\pi}{2}+ i \: sin \dfrac {\pi}{2} \right)}

Answered by Anonymous
30

Solution :-

 \:

Let ~

 \:

  \tt\pmb{ z =  \frac{1 + i}{1 - i} }

 \:

~Lets write z in the form a + ib

 \:

 \tt \pmb{z =  \frac{(1 +i) \times (1 + i) }{(1 - i) \times (1 + i)} }

 \:

 \tt \pmb{ z = \frac{(1 +  {i})^{2} }{ {1}^{2} -  {i}^{2}  } }

 \:

 \tt \pmb{z =  \frac{ {1}^{2} +  {i}^{2} + 2i  }{1 - ( - 1)} }

 \:

 \tt \pmb{z =  \frac{1 - 1 + 2i}{1 + 1} }

 \:

 \tt \pmb{ z = \frac{2i}{2} }

 \:

 \tt \pmb{z = i}

 \:

 \tt \pmb{  .°.z = 0 + i}

 \:

 \:

~We know that :-

 \:

 \tt \pmb{z = r( \cos \theta + i \sin \theta) }

 \:

Equating real and imaginary parts we get ~

 \:

 \tt \pmb{r \cos \theta , \:  \sin \theta = 1 }

 \:

By Squaring and adding we get~

 \:

 \tt \pmb{ {r}^{2}( { \cos }^{2}  \theta +  { \sin }^{2}  \theta =  {0}^{2}  +  {1}^{2})  }

 \:

 \tt \pmb{ {r}^{2} \times 1 = 1 }

 \:

 \tt \pmb{r = 1}

 \:

 \:

 \tt \pmb{r \cos \theta = 0 }

 \:

 \implies {\tt { \bold  { \cos \theta = 0 }}}

 \:

 \tt \pmb{r \sin \theta  = 1 }

 \:

 \implies \tt{ \sin \theta = 1 }

 \:

 \tt \pmb{.°. \theta =  \frac{\pi}{2} }

 \:

 \tt \pmb{.°. \theta =  \frac{\pi}{2} }

 \:

 \:

 \theta Lies in 1st quadrant.

 \:

 \tt \pmb{.°.i = 1( \cos \frac{\pi}{2} + i \sin \frac{\pi}{2})   }

 \:

 \:

Similar questions