Find the polar form of the
complex number 1+i
Answers
Answered by
1
Answer:
Ok.... wait... ✔️✔️✔️✔️✔️✔️✔️✔️✔️✔️✔️✔️✔️
Answered by
0
Step-by-step explanation:
Given, z=1−i
Let rcosθ=1andrsinθ=−1
On squaring and adding, we obtain
r
2
cos
2
θ+r
2
sin
2
θ=1
2
+(−1)
2
⇒r
2
(cos
2
θ+sin
2
θ)=2
⇒r
2
=2
⇒r=
2
(since,r>0 )
∴
2
cosθ=1 and
2
sinθ=−1
∴θ=−
4
π
(As θ lies in fourth quadrant.)
So, the polar form is
∴1−i=rcosθ+irsinθ=
2
cos(
4
−π
)+i
2
sin(
4
−π
)
=
2
[cos(
4
−π
)+isin(
4
−π
)]
Similar questions