find the polar form of z= i
Answers
Answered by
6
follows: The polar form of a complex number z=a+bi is z=r(cosθ+isinθ) , where r=|z|=√a2+b2 , a=rcosθ and b=rsinθ , and θ=tan−1(ba) for a>0 and θ=tan−1(ba)+π or θ=tan−1(ba)+180° for a<0 . Example: Express the complex number in polar form.
Answered by
0
Step-by-step explanation:
z=i
Let rcosθ=0 and rsinθ=1
On squaring and adding, we obtain
r2cos2θ+r2sin2θ=02+12
⇒r2(cos2θ+sin2θ)=1
⇒r2=1
⇒r=1=1 (Since, r>0)
∴cosθ=0 and sinθ=1
∴θ=2π
So, the polar form is
∴i=rcosθ+irsinθ=cos2π+isin2π
Similar questions