Math, asked by bosenandan9, 6 months ago

find the polynomial equation whose roots are 3,2,1+i and 1-i​

Answers

Answered by MaheswariS
7

\underline{\textsf{Given:}}

\textsf{Roots are 3,2,1+i,1-i}

\underline{\textsf{To find:}}

\textsf{Polynomial equation having roots 3,2,1+i,1-i}

\underline{\textsf{Solution:}}

\textsf{The required polynomial equation having given roots can}

\textsf{be written as}

\mathsf{(x-3)(x-2)(x-(1+i))(x-(1-i))=0}

\mathsf{(x^2-5x+6)(x-1-i)(x-1+i)=0}

\mathsf{(x^2-5x+6)((x-1)^2-i^2)=0}

\mathsf{(x^2-5x+6)(x^2-2x+2)=0}

\textsf{Multiplying}

\mathsf{x^2(x^2-2x+2)-5x(x^2-2x+2)+6(x^2-2x+2)=0}

\mathsf{x^4-2x^3+2x^2-5x^3+10x^2-10x+6x^2-12x+12=0}

\implies\mathsf{x^4-7x^3+18x^2-22x+12=0}

\underline{\textsf{Answer:}}

\mathsf{The\;required\;polynomial\;equation\;is}

\implies\mathsf{x^4-7x^3+18x^2-22x+12=0}

\underline{\textsf{Find more:}}

Similar questions