Math, asked by rtharigaammujan5, 9 months ago

Find the polynomial whose sum and product of the zeros are 5 and -3 ( Hint : Use P(x) = x2 – (sum of the zeros)x + (product of the zeros)

Answers

Answered by amitkumar44481
53

AnsWer :

x² - 5x - 3.

GiveN :

  • Sum of Zeros = 5.
  • Product Of Zeros = - 3.

SolutioN :

* Sum of Zeros.

→ 5.

\rule{90}2

* Product Of Zeros.

→ - 3.

\rule{90}2

We have, Formula.

→ K[ x² -Sx + P ]

Where as,

  • K Constant term.
  • S Sum of Zeros.
  • P Product of Zero.

Now,

→ K[ x² - ( 5 ) + ( - 3 ) ]

→ K [ x² - 5x - 3 ]

Therefore, the polynomial forms be x² - 5x - 3.

Answered by sethrollins13
30

✯✯ QUESTION ✯✯

Find the polynomial whose sum and product of the zeros are 5 and -3 ( Hint : Use P(x) = x2 – (sum of the zeros)x + (product of the zeros)

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

  • Sum of Zeroes (α+β) = 5
  • Product of Zeroes (αβ) = -3

Using Formula : -

\implies\tt{\small{\boxed{\bold{\bold{\pink{\sf{{x}^{2}-(\alpha+\beta)x+(\alpha\beta)}}}}}}}

Putting Values : -

\implies\tt{{x}^{2}-(5)x+(-3)}

\implies\tt{{x}^{2}-5x-3}

So , The quadratic polynomial is x²-5x-3...

_______________________

VERIFICATION : -

HERE : -

  • a = 1
  • b = -5
  • c = -3

Sum of Zeroes : -

\implies\tt{5=\dfrac{(-b)}{a}}

\implies\tt{5=\dfrac{-(-5)}{1}}

\implies\tt{5=5}

\pink\longmapsto\:\large\underline{\boxed{\bf\red{L.H.S}\orange{=}\purple{R.H.S}}}

Product of Zeroes : -

\implies\tt{-3=\dfrac{c}{a}}

\implies\tt{-3=\dfrac{-3}{1}}

\implies\tt{-3=-3}

HENCE VERIFIED

Similar questions