Math, asked by darkangle10, 2 months ago

find the polynomial whose zero are 3+√5/5,3-√5/5​

Answers

Answered by 12thpáìn
277

Given

  •  \sf{Zeros \:  of  \: polynomial \:  f(x)= \cfrac{3 +   \sqrt{5}  }{5}, \cfrac{3 -  \sqrt{5}} {5}}

To Find

  • Polynomial

Solution

Let

 \alpha  = \cfrac{3 +   \sqrt{5}  }{5}

 \beta  = \cfrac{3  -   \sqrt{5}  }{5}

 \sf{Polynomial \:  f(x)= x²-(sum \:  of \:  zeros)x+product \:  of \:  zeros}

\sf{Polynomial \:  f(x)= x² - ( \alpha  +  \beta )x+ \alpha  \beta }

\sf{Polynomial \:  f(x)= x² -  \left(\cfrac{3 +   \sqrt{5}  }{5} + \cfrac{3  -    \sqrt{5}  }{5}   \right)x+ \cfrac{3 +   \sqrt{5}  }{5} \times  \cfrac{3  -    \sqrt{5}  }{5}}

\sf{Polynomial \:  f(x)= x² -  \left(\cfrac{3 +   \sqrt{5}   + 3 -  \sqrt{5}  }{5}    \right)x+ \cfrac{(3 +   \sqrt{5})(3 -  \sqrt{5})   }{25}  }

\sf{Polynomial \:  f(x)= x² -  \left(\cfrac{3 +     \cancel{\sqrt{5}   }+ 3 -   \cancel{\sqrt{5}}  }{5}    \right)x+ \cfrac{ {3}^{2}   -    (\sqrt{5}) ^{2}    }{25}  }

\sf{Polynomial \:  f(x)= x² -  \cfrac{6   }{5}   x+ \cfrac{ 9 - 5    }{25}  }

\sf{Polynomial \:  f(x)= x² -  \cfrac{6   }{5}   x+ \cfrac{ 4    }{25}  }

\sf{Polynomial \:  f(x)= 25   \Bigg \{x² -  \cfrac{6   }{5}   x+ \cfrac{ 4    }{25}  }  \Bigg \}

\underbrace{\underline{\boxed{\pink{\sf{Polynomial \:  f(x)= 25 x² -  30x   + 4  } }}}}

Similar questions