Find the polynomial whose zeros are 2 alpha + 3 Beta 3 alpha + 2 Beta
Answers
Answered by
0
Answer:
Given Equation is f(x) = ma - nx - 3x².
Given that x + a is a factor of ma - nx - 3x².
⇒ x + a = 0
⇒ x = -a
Substitute x = -a, we get
f(-a) = ma - n(-a) - 3(-a)²
⇒ 0 = ma + na - 3a²
⇒ ma + na - 3a² = 0
⇒ 3a² - ma - na = 0
⇒ 3a² - a(m + n) = 0
⇒ 3a² = a(m + n)
⇒ 3a = m + n
⇒ a = (m + n)/3
Read more on Brainly.in - https://brainly.in/question/9749643#readmore
Step-by-step explanation:
Similar questions