Math, asked by eswar534, 8 months ago

find the polynomilas of
 \sqrt{3}   -  \sqrt{3}

Answers

Answered by CyberSquad
0

Answer:

Step-by-step explanation:

3+1/root3+1/3+root3+1/root3-3

3 + 1 \div  \sqrt{3}  + 1 \div 3 +  \sqrt{3}  + 1 \div  \sqrt{3}  - 3 =  

=>3+1/3-3+1/root3+1/root3+root3

=>1/3+2/root3+root3

=>1/3+2+(root3)^2/root3

=>1/3+2+3/root3

=>1/3+5/root3

=>root3+15/3root3

=  >  \sqrt{3}  + 15 \div 3 \sqrt{3}  

Follow me....

Answered by mddilshad11ab
94

\sf\large\underline{Correct\: Question:}

Find the quardric polynomial whose zeroes are √3 and -√3.

\sf\large\underline{Given:}

  • \rm{The\: zeroes\:are\:\sqrt{3}\:and\:-\sqrt{3}}

\sf\large\underline{To\: Find:}

  • \rm{Quardric\: polynomial}

\sf\large\underline{Solution:}

  • At first calculate sum of 2 zeroes and product of to zeroes than calculate quardric polynomial by using formula]

\sf\large\underline{Formula\: used:}

\rm{\implies Sum\:of\:2\: zeroes=\alpha+\beta}

\rm{\implies Sum\:of\:2\: zeroes=\sqrt{3}+(-\sqrt{3}}

\rm{\implies Sum\:of\:2\: zeroes=\sqrt{3}-\sqrt{3}}

\rm{\implies Sum\:of\:2\: zeroes=0}

  • Now, Find out product of 2 zeroes]

\rm{\implies Product\:of\:2\: zeroes=\alpha\times\:\beta}

\rm{\implies Product\:of\:2\: zeroes=\sqrt{3}\times\:(-\sqrt{3}}

\rm{\implies Product\:of\:2\: zeroes=-\sqrt{9}}

\rm{\implies Product\:of\:2\: zeroes=-3}

  • Now, calculate quardric polynomial here]

\rm{\implies x^2-(sum\:of\:2\: zeroes)x+(product\:of\:2\: zeroes)}

\rm{\implies x^2-0\times\:x+(-3)}

\rm{\implies x^2-0-3}

\rm{\implies x^2-3}

\sf\large{Hence,}

\rm{\implies Quardric\: polynomial=x^2-3}

Similar questions