Physics, asked by rocky200216, 10 months ago

Find the position of final image from 'O' for the
arrangement shown.
20cm
20cm
Object
f=40cm
f= 40cm
(1) -24 cm
(3) -40 cm
(2)-120 cm
(4) -20 cm​

Attachments:

Answers

Answered by amansharma264
24

 \bf \to \:  \green{{ \underline{to \: find \div }}}

 \sf \to \: the \: position \: of \: final \: image \: from \: o

 \bf \to \: { \underline{solution \div }}

 \sf \to \: for \: convex \: lens \\  \\  \sf \to \: distance \: of \: object \:  = u \:  =  - 20cm \\  \\  \sf \to \: focal \: length \:  = 40cm \\  \\  \sf \to \: from \: lens \: formula \:   \implies  \frac{1}{v}   =  \frac{1}{f}  +  \frac{1}{u}  \\  \\  \sf \to \:  \frac{1}{v} =  \frac{1}{40}   +  \frac{1}{ - 20}  \\  \\  \sf \to \:  \frac{1}{v}  =  \frac{1 - 2}{40} \\  \\  \sf \to \:  \frac{1}{v} =  \frac{ - 1}{40} \\  \\  \sf \to \: v \:  =  - 40cm \\  \\  \sf \to \: distance \: from \: concave \: lens \:  = -40 - 20 =  - 60cm \\  \\  \sf \to \: by \: apply \: again \: lens \: formula \\  \\  \sf \to \:  \frac{1}{v}  =  \frac{1}{f}   +  \frac{1}{u}    \\  \\  \sf \to \:  \frac{1}{v}  =  \frac{1}{-40}  +  \frac{1}{ - 60} \\  \\  \sf \to \:  \frac{1}{v} \:  =  \frac{-3-2}{120} \\  \\  \sf \to \:  \frac{1}{v}  =  \frac{ - 5}{120} \\   \\  \sf \to \: v \:  =  - 24cm \\  \\  \sf \to \:  \therefore \: position \: of \: final \: position \: from \: o =  - 24cm

Answered by dipanshuashoka90
1

Answer:

\huge\bold\purple{A}\red{N}\green{S}\blue{W}\purple{E}\green{R}

\huge\bold\red{\boxed{-24}}

Similar questions