Math, asked by Anonymous, 1 day ago

Find the positive integral value of n such that:

(1 × 2¹) + (2 × 2²) + (3 × 2³) + (n × 2ⁿ) = 2^(n + 10) + 2​

Attachments:

Answers

Answered by IamIronMan0
18

Answer:

 \huge \red{n = 513}

Step-by-step explanation:

Let

s = 1. {2}^{1}  + 2 .{2}^{2}  + 3. {2}^{2}  + . \: . \: . \:  . + n. {2}^{n}  \\  \\  2s = 1. {2}^{2}  + 2. {2}^{3}  + . \: . \: . \: . + n . {2}^{n + 1}  \\  \\ subtract \: both \: equations \:  \\  \\  2s - s =  - 1. {2}^{1}   -   \{2 {}^{2}  +  {2}^{3}  + . \: . \:  +  {2}^{n}   \} + n. {2}^{n + 1}  \\  \\ s =  - 2 + n. {2}^{n + 1}   -   \frac{2 {}^{2} ( {2}^{n - 1}  - 1)}{2 - 1}  \\  \\ s = -  2 + n. {2}^{n + 1}   -   {2}^{n + 1}   + 2 {}^{2}  \\  \\  \red{ \boxed{s =  {2}^{n + 1} (n  -  1)  + 2}}

Now given

s =  {2}^{n + 10}  + 2 =  {2}^{n + 1}(n - 1) + 2  \\  \\  \implies \:  {2}^{n + 10}  =  {2}^{n + 1} (n - 1) \\  \\ \implies \:  {2}^{n } . {2}^{10}  =  {2}^{n }.2 (n - 1) \\  \\  \implies \:  {2}^{10}  = 2(n - 1) \\  \\  \implies \: n - 1 =  {2}^{9}  = 512 \\  \\  \implies \: n = 512 + 1 = 513

Answered by XxitzZBrainlyStarxX
10

Question:-

Find the positive integral value of n such that

\sf \large 1.2 {}^{1}  + 2.2 {}^{2}  + 3.2 {}^{3}  + n.2 {}^{n}  = 2 {}^{(n + 10)}  + 2

Given:-

\sf \large 1.2 {}^{1}  + 2.2 {}^{2}  + 3.2 {}^{3}  + n.2 {}^{n}  = 2 {}^{(n + 10)}  + 2

To Find:-

  • The positive Integral value of n

Solution:-

Series can be summed as:

 \sf \large 2 {}^{1}  + 2 {}^{2}  + 2 {}^{3}  + ... + 2 {}^{n}  = 2 {}^{n + 1}  - 2 \\ \:  \:   \:  \:  \:  \:  \:  \sf \large 2 {}^{2}  + 2 {}^{3} + ... + 2 {}^{n}  = 2 {}^{n + 1} 2 {}^{2} - 2 {}^{2}   \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:  \sf \large2 {}^{3}  + ... + 2 {}^{n}  = 2 {}^{n + 1}  - 2 {}^{3}  \\ \sf \large... \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ... \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ... \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  ... \\   \sf \large \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:+ 2 {}^{n}  = 2 {}^{n + 1}  - 2 {}^{n} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   } \\ \sf \large    \:  \:  \:  \:  \:   \:  \:  \:  \:  = n(2 {}^{n + 1} ) - (2 {}^{n + 1}  - 2) \\  \sf \large  = 2 {}^{n + 1} (n - 1) + 2 \\  \\ \sf \large Given  \: that \: 2 {}^{n + 1} (n - 1) + 2 = 2 {}^{n + 10}  + 2

 \sf \large \Rightarrow(n - 1)2 {}^{n + 1 }  = 2 {}^{n + 10}

 \sf \large \Rightarrow n - 1 = 2 {}^{9}

 \sf \large \Rightarrow n = 2 {}^{9}  + 1 = 513

Answer:-

{ \boxed{ \sf \huge \mathfrak\green{n = 513.}}}

Hope you have satisfied.

Similar questions