find the positive soltuion
Answers
Step-by-step explanation:
2/(x+1) + 5/2x = 2
2X × 2 + 5(x+1) / (x+1) (x+1) =2
4x+5x+5 /2x^2+2x=2
9x+5=4x^4x
4x^2+4x-9x-5=0
4x^2-5x-5=0
use quadratic formula
x=-b+√b^2-4ac / 2a
x=5+√(-5) ^2-4×4×-5 / 8
x=5+√25+80 / 8
x=5+√105 / 8
Answer is x=5-√105 / 8
Step-by-step explanation:
Given:-
1/(x^2-10x-29) + 1/(x^2-10x-45) - 2/(x^2-10x-69) = 0
To find:-
Find the positive solution ?
Solution:-
Given equation is :
1/(x^2-10x-29) + 1/(x^2-10x-45) - 2/(x^2-10x-69) = 0
It can be written as
1/(x^2-10x-29) + 1/(x^2-10x-29-16) -2(x^2-10x-29-40)
= 0
Put x^2 -10x -29 = a then
=>1/a + 1/(a-16) - 2/(a-40) = 0
=>[(a-16)(a-40)+(a)(a-40)-2(a)(a-16)]/[(a)(a-16)(a-40)]
=0
=>[(a-16)(a-40)+(a)(a-40)-2(a)(a-16)] =
[(a)(a-16)(a-40)]×0
=>[(a-16)(a-40)+(a)(a-40)-2(a)(a-16)] = 0
=>[(a^2-16a-40a+640)+(a^2-40a)-2(a^2-16a)] = 0
=>[a^2-56a+640+a^2-40a-2a^2+32a ] = 0
=>[2a^2-96a+640-2a^2+32a] = 0
=>[-96a+32a+640] = 0
=>[-64a+640] = 0
=>64(-a+10)=0
=> -a+10 = 0/64
=> -a +10 = 0
=> -a = -10
=> a = 10
Now
=>x^2 -10x -29 = 10
=>x^2-10x-29-10 = 0
=>x^2-10x-39 = 0
=>x^2+3x-13x -39 = 0
=>x(x+3)-13(x+3) = 0
=>(x+3)(x-13) = 0
=>x+3 = 0 or x-13 = 0
=>x= -3 or x= 13
The values of x = -3 and 13
The positive value of x = 13
Answer:-
The positive solution for the given equation is 13