Math, asked by jaishanker12388, 1 year ago

find the positive square root of 16+ 2 root 55​

Answers

Answered by AKR369
4

Answer: 30.8,323,969,741,913

Step-by-step explanation: Please mark me the brainleist

Answered by abhijattiwari1215
0

Answer:

Square root of ( 16 + 2√55 ) is (√11 + √5 ) .

Step-by-step explanation:

To find :

 \sqrt{(16 + 2 \sqrt{55}) }

Solution :

  • Let square root of ( 16 + 2√55 ) be (√a + √b ). Then,

 \sqrt{(16 + 2 \sqrt{55}) }  =  \sqrt{a}  +  \sqrt{b} \\ squaring \: both \: sides \: we \: get \\ 16 + 2 \sqrt{55}  =   ({ \sqrt{a} +  \sqrt{b}  })^{2} \\ 16 + 2 \sqrt{55}  = a + b + 2 \sqrt{ab}  \\ comparing \: both \: sides \: we \: get \\ a + b = 16  -  -  - (1) \\  ab = 55 \\ ⇒a =  \frac{55}{b} -  -  - (2) \\ putting \: value \: of \: b \: from \: (2)in \: (1) \\  \frac{55}{b}  + b = 16 \\ or \:  \:  \:  \:  {b}^{2}  - 16b + 55 = 0 \\  {b}^{2}  - 11b - 5b + 55 = 0 \\ (b - 11)( b- 5) = 0 \\  b= 11 \: or \: 5

  • Now, putting value of b in equation (2), we get

a =  \frac{b}{5}  \\ if \: \: b = 11 \: then \: a = 5 \\ if \: b   = 5 \: then \: a   = 11

  • Hence, square root of ( 16 + 2√55 ) is (√11 + √5 )

 \sqrt{16 + 2 \sqrt{55} }  =  (\sqrt{11}  +  \sqrt{5} )

Similar questions