Math, asked by akshital8, 9 months ago

Find the positive value of the variable for which the given equation is satisfied . pls give this answer fast guys .​

Attachments:

Answers

Answered by ItzAditt007
19

Answer:-

The Required Value Of x is 6.

Explanation:-

Given:-

  • An equation \bf\dfrac{3-x^2}{8+x^2} = \dfrac{-3}{4}.

To Find:-

  • The positive value of variable i.e. x.

So,

Let us Solve the given equation,

 \\ \rm\mapsto  \frac{3 -  {x}^{2} }{8 +  {x}^{2} }  =  \dfrac{ - 3}{4}.

 \\ \rm\mapsto4(3 -  {x}^{2} ) =  - 3(8 +  {x}^{2}). \:    \\ \bf (cross \:  \: multiplying).

 \\ \rm\mapsto12 - 4 {x}^{2}  =  - 24 - 3 {x}^{2} . \\  \bf(op en in g \:  \: brackets).

 \\ \rm\mapsto12 + 24 =  - 3 {x}^{2}  + 4 {x}^{2} . \\   \bf(transporting).

 \\ \rm\mapsto36 =  {x}^{2} .

 \\ \rm\mapsto {x}^{2}  = 36.

 \\ \rm\mapsto x = \pm\sqrt{36}.

 \\ \rm\mapsto x =  \pm\sqrt{6 \times 6} .

 \\  \large \red{\mapsto \boxed{ \blue{ \bf x = 6\:\:\:\:or\:\:\:\:x= -6.}}}

But we need to find out the positive value of x.

\bf\therefore The Required Value Of x is 6.

Verification:-

Let put the value of x in the equation to verify the solution,

\\ \tt\mapsto \frac{3 -  {x}^{2} }{8 +  {x}^{2} } =  \frac{ - 3}{4}  .

\\ \tt\mapsto \frac{3 - (6) {}^{2} }{8 +  (6)^{2} }  =  \frac{ - 3}{4} .

\\ \tt\mapsto \frac{3 - 36}{8 \times 36}  =  \frac{ - 3}{4} .

\\ \tt\mapsto \cancel \frac{ - 33}{44}  =  \frac{ - 3}{4} .

 \\  \large \red{\mapsto \boxed{ \blue{ \bf  \frac{ - 3}{4}  =  \frac{ - 3}{4} .}}}

So LHS = RHS, Hence Verified.

Similar questions