Find the possible Length and Breadth of the rectangle, perimeter and the Length of the diagonal...
(diagonal has 2 values in root)
Area = 25a² - 35a + 12
Answers
✰Solution :
☞︎︎︎ Given :
- Area = 25a² - 35a + 12
★ We know ,
➪ Area = Lenghth + breadth
★ Area = 25a² - 35a + 12
- Splitting The Middle Term :
= 25a² - 35a + 12
➪ 25a² - 20a - 15a + 12
➪ 5a(5a - 4) - 3(5a - 4)
= (5a - 3)(5a - 4)
= L × B
☞︎︎︎ We have :
- Length = 5a - 3
- Breadth = 5a - 4
✰ Perimeter = 2(lenght + breadth)
➪ 2(5a - 3 + 5a - 4)
➪ 2(10a - 7)
➪ 2(10a) - 2(7)
➪ 20a - 14
∴ perimeter = 20a - 14
- Finding Diagonal :
☞︎︎︎ we get right angel triangle by half of rectangle (diagonal)
- Pythagoras Theorem :
✰ H² = B² + P²
- H = To find (diagonal)
- B = 5a - 3
- P = 5a - 4
➪ H² = (5a - 3)² + (5a - 4)²
➪ H² = 25a² - 9 + 25a² - 16
➪ H² = 50a² - 25
Step-by-step explanation:
✰Solution :
\:
☞︎︎︎ Given :
\:
Area = 25a² - 35a + 12
\:
★ We know ,
\:
➪ Area = Lenghth + breadth
\:
★ Area = 25a² - 35a + 12
\:
Splitting The Middle Term :
\:
= 25a² - 35a + 12
➪ 25a² - 20a - 15a + 12
➪ 5a(5a - 4) - 3(5a - 4)
= (5a - 3)(5a - 4)
= L × B
\:
☞︎︎︎ We have :
\:
Length = 5a - 3
\:
Breadth = 5a - 4
\:
✰ Perimeter = 2(lenght + breadth)
\:
➪ 2(5a - 3 + 5a - 4)
➪ 2(10a - 7)
➪ 2(10a) - 2(7)
➪ 20a - 14
\:
∴ perimeter = 20a - 14
\:
Finding Diagonal :
\:
☞︎︎︎ we get right angel triangle by half of rectangle (diagonal)
\:
Pythagoras Theorem :
\:
✰ H² = B² + P²
\:
H = To find (diagonal)
B = 5a - 3
P = 5a - 4
\:
➪ H² = (5a - 3)² + (5a - 4)²
➪ H² = 25a² - 9 + 25a² - 16
➪ H² = 50a² - 25
\:
\large \boxed{\therefore \rm \: diagonal = \sqrt{50 {a}^{2} - 25} }
∴diagonal=
50a
2
−25