Math, asked by samsahoo5126, 8 months ago

Find the possible value of m if (x²+3x+5)(x²-3x+5)=m²-n². options.(a): x²-3x. (b): 3x. (c): x²+5. (d): x²+2x+1​

Answers

Answered by Anonymous
0

option (c) + 5

( {x}^{2}  + 3x + 5)( {x}^{2}  - 3x + 5)  =  {m}^{2} -  {n}^{2}  \\ (( {x}^{2}  + 5) + 3x)(( {x}^{2}  + 5) - 3x) =  {m}^{2}  -  {n}^{2}  \\  {( {x}^{2} + 5) }^{2}  -  {(3x)}^{2}  =  {m}^{2}  -  {n}^{2}  \\  {m}^{2}  = ( {x}^{2} + 5) }^{2} \\ m =  {x}^{2}  + 5

Answered by BrainlyRish
19

Given that , ( x² + 3x + 5 ) ( x² - 3x + 5 ) = - n² .

Exigency To Find : The Possible value for m ?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

 \qquad:\implies \sf \Big\{ x ^2 + 3x + 5 \Big\} \:\:\Big\{ x ^2 - 3x + 5 \Big\} \:=\: m^2 - n^2 \:\\\\ \qquad:\implies \sf \Big\{ ( x^2 + 5 ) \:-  3x  \Big\}\:\: \Big\{( x^2+ 5 ) \: - 3x  \Big\}  \:=\:m^2 - n^2 \:\\\\

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \sf{ Algebraic \:Indentity \::\:a^2 - b^2 = ( a + b ) ( a - b ) }\bigg\rgroup \\\\

 \qquad:\implies \sf \Big\{ ( x^2  + 5 ) \:-  3x  \Big\}\:\: \Big\{  ( x^2  + 5 ) \: - 3x  \Big\}  \:=\:m^2 - n^2 \:\\\\\qquad:\implies \sf \Big\{ ( x^2  + 5 ) ^2 \:-  (3x)^2  \Big\}\:\:   \:=\:m^2 - n^2 \:\\\\

⠀⠀⠀⠀⠀▪︎⠀⠀By Comparing L.H.S to R.H.S :

\qquad:\implies \sf \Big\{ ( x^2  + 5 ) ^2 \:- (3x)^2 \Big\}\:\:   \:=\:m^2 - n^2

We get,

 \qquad \dashrightarrow \sf m^2 \:=\: \Big(  x^2  + 5  \: \Big)^2\:\:\\\\ \qquad \dashrightarrow \sf m \:=\:\sqrt{ \Big(  x^2  + 5  \: \Big)^2\:}\:\\\\ \qquad \dashrightarrow \sf m \:=\:  x^2  + 5  \: \:\:\\\\\qquad \dashrightarrow \pmb{\bf{\purple { m \:=\:x^2  + 5}}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀AND ,

 \qquad \dashrightarrow \sf n^2 \:=\: \Big(   3x \: \Big)^2\:\:\\\\ \qquad \dashrightarrow \sf n \:=\:\sqrt{ \Big(  3x \: \Big)^2\:}\:\\\\ \qquad \dashrightarrow \sf n \:=\:  3x \: \:\:\\\\\qquad \dashrightarrow \pmb{\bf{\purple { n \:=\:3x }}}\\

\qquad \therefore \:\underline {\sf Hence,  \: The \: Possible \: value \: for  \: m \: is \: \pmb{\bf Option \: C \:)\:: x^2  + 5}\:.}\\

Similar questions