Math, asked by abrahmanf10, 1 month ago

Find the possible values of k if the pairs of linear equations 3x - ky = 5 and
2x+ 2y = 15 will have a unique solution.

Answers

Answered by CuteAnswerer
66

GIVEN :

  • A pair of linear equations : 3x -ky = 5 and 2x +2y = 15

TO FIND :

  • The value of k so that the equations have a unique solution.

SOLUTION :

We know that,

If a pair of equations is consistent and has a unique solution.

  • \pink{\bf{ \dfrac{a}{d} \ne \dfrac{b}{e}}}

Here,

  • a = 3

  • b = -k

  • d = 2

  • e = 2

Substituting the given values :

:  \longrightarrow  \sf \dfrac{3}{2} \neq \dfrac{  -  k}{2}

  • By Cross Multiplication :

 :  \longrightarrow  \sf3 \times 2\ne 2 \times  (- k)    \\  \\

:  \longrightarrow  \sf  6\ne- 2k  \\  \\

: \longrightarrow  \sf   \cancel{\dfrac{6}{ - 2}}  \ne k\\ \\

 :  \longrightarrow \underline{\huge{\boxed{ \purple{\bf{k\neq -3}}}}}

\huge{\red{\therefore}} The value of k can be any real number except -3.

Answered by MagicalPearl
39

\:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \cal\huge\red{\mid{\overline{\underline{Question } \red{:-}}}\mid}

Find the possible values of k if the pairs of linear equations 3x - ky = 5 and 2x+ 2y = 15 will have a unique solution.

 \:  \:  \:  \:  \:  \:  \: \cal\huge\red{\mid{\overline{\underline{ \:  \:  \:  Solution } \red{:-}}}\mid}

The given pair of linear equations is,

 \:  \:  \:  \:  \:  \: \:  \:  \:   \rm{3x - ky -5 \:  =  \: 0}

 \:  \:  \:  \:  \:  \: \: \: \: \rm{2x  + 2y  - 15 \:  =  \: 0}

 \rm{ \: \: Where,  \: a_1 =3, \:  b_1 = - k , c_1 =  -5 }

 \rm{ \: and \:  \:  \: a_2 =2 , b_2 =2 , c_2 = - 15}

⠀⠀

For an unique solution, we must have

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \:  \:  \:  \:  \: \rm\purple{\dfrac{a_1}{a_2}   \neq  \dfrac{b_1}{b_2}}

 \:  \:  \:  \: \rm{i.e. \:  \:  \:  \:  \: \:  \:  \:   \dfrac{3}{2}} \:  \ne \:  \dfrac{ - k}{2}

 \:  \:  \:  \:  \:  \rm{ \implies \: k \:  \ne \:  -3}

⠀ So, the given pair of linear equations will have an unique solution for real values of k other than -3.

Similar questions