Math, asked by janhavirane81, 1 month ago

Find the possible values of tan x, if cos²x + 5 sin x in to
cos x = 3.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

 \sf \:  {cos}^{2} x \:  +  \: 5sinx \: cosx \:  = 3

\large\underline{\sf{To\:Find - }}

 \sf \: value \: of \: tanx

\large\underline{\sf{Understanding \:  the  \: concept - }}

Since, we have to find the value of tanx, so we have firstly convert the given equation in terms of tanx by dividing the whole equation by cos²x. Then, we factorize the given equation using splitting of middle terms.

Splitting of middle terms :-

  • In order to factorize  ax² + bx + c we have to find numbers p and q such that p + q = b and pq = ac.

  • After finding p and q, we split the middle term in the quadratic as px + qx and get desired factors by grouping the terms.

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 1. \:  \:  \: \boxed{ \bf{tanx \:  =  \: \dfrac{sinx}{cosx} }}

2. \:  \:  \:  \boxed{ \bf{secx \:  =  \: \dfrac{1}{cosx} }}

3. \:  \:  \:  \boxed{ \bf{ {sec}^{2} x -  {tan}^{2} x \:  =  \: 1}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {cos}^{2} x \: +   \: 5 \: sinx \: cosx \:  =  \: 3

On dividing both sides by cos²x, we get

\rm :\longmapsto\:\dfrac{ {cos}^{2} x}{ {cos}^{2}x }  + \dfrac{5sinx \: cosx}{ {cos}^{2}x }  = \dfrac{3}{ {cos}^{2}x }

\rm :\longmapsto\:1 \:  +  \: 5 \: tanx \:  =  \: 3 \:  {sec}^{2} x

\rm :\longmapsto\:1 \:  +  \: 5 \: tanx \:  =  \: 3 \:(1 +   {tan}^{2} x)

\rm :\longmapsto\:1 \:  +  \: 5 \: tanx \:  =  3 + \: 3 \:  {tan}^{2} x

\rm :\longmapsto\:\: 3 \:  {tan}^{2} x \:   -   \: 5tanx \:  +  \: 2  \: = \:  0

\rm :\longmapsto\:\: 3 \:  {tan}^{2} x \:   -   \: 3tanx \:  -  \: 2tanx +  \: 2  \: = \:  0

\rm :\implies\:3tanx(tanx - 1) - 2(tanx - 1) =  0

\rm :\longmapsto\:(tanx - 1)(3tanx - 2) = 0

\rm :\longmapsto\:tanx - 1 = 0 \:  \: or \:  \: 3tanx - 2 = 0

\bf\implies \:tanx = 1 \:  \:  \: or \:  \:  \: tanx = \dfrac{2}{3}

Additional Information :-

1. \:  \:  \:  \boxed{ \bf{cosecx \:  =  \: \dfrac{1}{sinx} }}

2. \:  \:  \:  \boxed{ \bf{cotx \:  =  \: \dfrac{cosx}{sinx} }}

3. \:  \:  \:  \boxed{ \bf{ {sin}^{2}x +  {cos}^{2}x = 1}}

4. \:  \:  \:  \boxed{ \bf{ {cosec}^{2} x -  {cot}^{2} x \:  =  \: 1}}

Similar questions