Math, asked by skkara214skk, 10 months ago

Find the Principal amount. If the difference of.S.I and C.I at 12.5% per annum for 3 years is Rs. 750.

Answers

Answered by BrainlyConqueror0901
26

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Principal=15360\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\ \tt: \implies C.I- S.I= 750 \: rupees \\  \\  \tt: \implies Rate\% (r)= 12.5\% \\  \\ \tt: \implies Time(t) = 3 \: years \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt: \implies Principal =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies S.I= \frac{p \times 12.5 \times 3}{100}  \\  \\ \tt:  \implies S.I=0.375p -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies A= p(1 +  \frac{r}{100} )^{t}  \\  \\ \tt:  \implies A= p \times (1 +  \frac{12.5}{100} )^{3}  \\  \\ \tt:  \implies A =p \times (1 + 0.125)^{3}  \\  \\ \tt:  \implies A =p \times 1.423828125 -  -  -  -  - (2) \\  \\  \bold{for \: compound \: interest} \\ \tt:  \implies C.I=A - p \\  \\ \tt:  \implies C.I= 1.423828125p - p \\  \\ \tt:  \implies C.I=0.423828125p -  -  -  -  - (3) \\  \\ \bold{For \: Difference : } \\ \tt:  \implies C.I- S.I = 750 \\  \\ \tt:  \implies 0.423828125p - 0.375p = 750  \\  \\ \tt:  \implies 0.048828125 p = 750 \\  \\ \tt:  \implies p =  \frac{750}{0.048828125}  \\  \\  \green{\tt:  \implies p = 15360 \: rupees}

Answered by BrainlyPopularman
15

Correct Question :

Find the Principal amount. If the difference of C.I. and S.I. at 12.5% per annum for 3 years is Rs. 750.

GIVEN :

C.I. - S.I. = 750 rupees

• Rate = 12.5%

• Time = 3 year

TO FIND :

• Principal amount = ?

SOLUTION :

We know that –

 \\  \implies{ \bold{S.I. =  \dfrac{p \times r \times t}{100} }} \\

 \\  \implies{ \bold{S.I. =  \dfrac{p \times 12.5 \times 3}{100} }} \\

 \\  \implies{ \bold{S.I. = 0.375p }} \\

• let's find C.I.

 \\  \implies{ \bold{C.I. = A - p }} \\

• We know that Amount –

 \\  \implies{ \bold{A = p \left(1 +  \frac{r}{100} \right)^{t}   }} \\

• So that –

 \\  \implies{ \bold{C.I. = p \left(1 +  \frac{r}{100} \right)^{t} - p }} \\

 \\  \implies{ \bold{C.I. = p \left(1 +  \frac{12.5}{100} \right)^{3} - p }} \\

 \\  \implies{ \bold{C.I. = p \left( \dfrac{112.5}{100} \right)^{3} - p }} \\

 \\  \implies{ \bold{C.I. = p \left( 1.125 \right)^{3} - p }} \\

 \\  \implies{ \bold{C.I. = p \left(1.423828125 \right) - p }} \\

 \\  \implies{ \bold{C.I. =0.423828125 p }} \\

• According to the question –

 \\  \implies{ \bold{C.I. - S.I. = 750  }} \\

 \\  \implies{ \bold{0.423828125 p - 0.375p = 750  }} \\

 \\  \implies{ \bold{0.048828125p = 750  }} \\

 \\  \implies \large{ \boxed{ \bold{p = 15,360 \:  \: rupees}}} \\

Similar questions