find the principal argument and general argument for
Answers
Answer:
3x + y
Step-by-step explanation:
it is the answer... m
Required Answer :-
Given,
Given,z=5+5i=a+ib
Given,z=5+5i=a+ibPrinciple argument,
Given,z=5+5i=a+ibPrinciple argument,θ=tan
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 (
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( a
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 (
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 5
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55 )=tan
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55 )=tan −1
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55 )=tan −1 (1)
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55 )=tan −1 (1)∴θ=
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55 )=tan −1 (1)∴θ= 4
Given,z=5+5i=a+ibPrinciple argument,θ=tan −1 ( ab )=tan −1 ( 55 )=tan −1 (1)∴θ= 4π
Have a great day ahead mate ❤️