Math, asked by dindini5986, 1 month ago

find the principal solution of cosecx=2 (with picture or solution please )​

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

The given Trigonometric equation is

\red{\rm :\longmapsto\:cosecx = 2 \: }

can be rewritten as

\rm :\longmapsto\:\dfrac{1}{sinx}  = 2

\rm :\longmapsto\:sinx = \dfrac{1}{2}

\rm :\longmapsto\:sinx =sin\bigg[ \dfrac{\pi}{6} \bigg]

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: sinx = sin(\pi - x) \: }}}

So, using this, above can be rewritten as

\rm :\longmapsto\:sinx = sin\bigg[\dfrac{\pi}{6} \bigg] \:  \: or \:  \: sin\bigg[\pi - \dfrac{\pi}{6} \bigg]

\rm :\longmapsto\:sinx = sin\bigg[\dfrac{\pi}{6} \bigg] \:  \: or \:  \: sin\bigg[\dfrac{6\pi - \pi}{6} \bigg]

\rm :\longmapsto\:sinx = sin\bigg[\dfrac{\pi}{6} \bigg] \:  \: or \:  \: sin\bigg[\dfrac{5\pi}{6} \bigg]

\bf\implies \:x = \dfrac{\pi}{6}  \:  \: or \:  \: \dfrac{5\pi}{6}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Similar questions