Math, asked by alishakhan3, 1 year ago

Find the principal solution of
(i) sin x =-root 3/2
(ii) cos x =-1/2
(iii) cot x =-root 3

Answers

Answered by Shubhendu8898
22
Hi ....Nidhi.
Here is your answer....
Attachments:
Answered by HappiestWriter012
20

Some of the general formulas,

If,  \sin( \theta)  =  \sin( \alpha )

then,  \theta = n\pi  + (  { - 1})^{n}  \alpha

If,  \cos( \theta)  =  \cos( \alpha )

then,  \theta = 2n\pi   \pm \alpha

Solution lying in the range of [ 0, 360°] are called Principal solutions.

____________________________________________________________________

1) \sin(x)  = -   \frac{ \sqrt{3} }{2}  \\  \\  \sin(x)  =  - sin( \frac{\pi}{3} ) \\  \\  \sin(x) =  \sin( -  \frac{\pi}{3} )  \\  \\ x = n\pi + ( - 1) ^{n} (  \frac{ - \pi}{3} )

For n = 1,

x = \pi +  \frac{ \pi}{3}  =  \frac{4\pi}{3}

For n =2,

x =2 \pi +  \frac{  - \pi}{3}  =  \frac{5\pi}{3}

Therefore, The principal solutions of

 \sin(x)  =  \frac{ -  \sqrt{3} }{2}  \:  \sf \: are \:  \:  \:  \frac{4\pi}{3} , \:  \frac{5\pi}{3}

___________________________________________________________________

2) \cos(x)  =  -  \frac{1}{2}  \\   \\   \cos(x)  =  \cos(\pi -  \frac{\pi}{3} )  \\  \\  \cos(x)  =  \cos( \frac{2\pi}{3} )  \\  \\ x = 2n\pi \pm \:  \frac{2\pi}{3}

For n = 0,

x =  \pm \frac{2\pi}{3}

For n =1,

x = 2\pi \pm \:  \frac{2\pi}{3}

Therefore, The principal solutions of

 \cos(x)  =  \frac{ -  1 }{2}  \:  \sf \: are \:  \:  \:  \frac{2\pi}{3}, \:  \frac{4\pi}{3}

__________________________________________________________________

3) cotx =  -  \sqrt{3}  \\  \\  \tan(x)  = -   \frac{1}{ \sqrt{3} }  \\  \\  \tan(x)  =  -  \tan( \frac{\pi}{6} )  \\  \\  \tan(x)  =  \tan( -  \frac{\pi}{6} )  \\  \\ x = n\pi  -  \frac{\pi}{6}

For n = 1,

x = \pi -  \frac{\pi}{6}  =  \frac{5\pi}{6}

For n = 2,

x =2 \pi -  \frac{\pi}{6}  =  \frac{11\pi}{6}

Therefore, The principal solutions of

 \cot(x)  =   -  \sqrt{3}   \:  \sf \: are \:  \:  \:  \frac{5\pi}{6},  \:  \frac{11\pi}{6}

________________________________________________________________

Similar questions