Math, asked by ayushsengar18124, 2 months ago

find the principal value of Sin-' (Sin 2π/3 ) + tan-' (tan 7π/6 )​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {sin}^{ - 1}\bigg(sin\dfrac{2\pi}{3} \bigg) +  {tan}^{ - 1}\bigg(tan\dfrac{7\pi}{6} \bigg)

Consider,

\rm :\longmapsto\: {sin}^{ - 1}\bigg(sin\dfrac{2\pi}{3} \bigg)

We know,

\rm :\longmapsto\: {sin}^{ - 1}(sinx) = x \:  \: if \: x \:  \in \: \bigg[ -\dfrac{\pi}{2}  , \dfrac{\pi}{2} \bigg]

Now, here

\rm :\longmapsto\: \dfrac{2\pi}{3}  \:   \cancel\in \: \bigg[ -\dfrac{\pi}{2}  , \dfrac{\pi}{2} \bigg]

So,

\rm :\longmapsto\: {sin}^{ - 1}\bigg(sin\dfrac{2\pi}{3} \bigg)

\rm \:  =  \:  \: \: {sin}^{ - 1}\bigg[sin\bigg(\pi - \dfrac{\pi}{3} \bigg)  \bigg]

\rm \:  =  \:  \: \: {sin}^{ - 1}\bigg[sin\bigg(\dfrac{\pi}{3} \bigg)  \bigg]

\rm \:  =  \:  \: \:\dfrac{\pi}{3}  \: \:  \:  \:  \:  \:  \:  \:  \:  \:    \red{\: as \: \dfrac{\pi}{3} \in \: \bigg[ -\dfrac{\pi}{2}  , \dfrac{\pi}{2} \bigg] }

\bf :\longmapsto\: {sin}^{ - 1}\bigg(sin\dfrac{2\pi}{3} \bigg) = \dfrac{\pi}{3}

Now,

Consider,

\rm :\longmapsto\: {tan}^{ - 1}\bigg(tan\dfrac{7\pi}{6} \bigg)

Now, here

\rm :\longmapsto\: \dfrac{7\pi}{6}  \:   \cancel\in \: \bigg( -\dfrac{\pi}{2}  , \dfrac{\pi}{2} \bigg)

So,

\rm :\longmapsto\: {tan}^{ - 1}\bigg(tan\dfrac{7\pi}{6} \bigg)

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg[tan\bigg(\pi  +  \dfrac{\pi}{6} \bigg)  \bigg]

\rm \:  =  \:  \: \: {tan}^{ - 1}\bigg[tan\bigg(\dfrac{\pi}{6} \bigg)  \bigg]

\rm \:  =  \:  \: \:\dfrac{\pi}{6}  \: \:  \:  \:  \:  \:  \:  \:  \:  \:    \red{\: as \: \dfrac{\pi}{6} \in \: \bigg( -\dfrac{\pi}{2}  , \dfrac{\pi}{2} \bigg)}

\bf :\longmapsto\: {tan}^{ - 1}\bigg(tan\dfrac{7\pi}{6} \bigg) = \dfrac{\pi}{6}

Therefore,

\bf :\longmapsto\: {sin}^{ - 1}\bigg(sin\dfrac{2\pi}{3} \bigg) +  {tan}^{ - 1}\bigg(tan\dfrac{7\pi}{6} \bigg)

\rm \:  =  \:  \: \:\dfrac{\pi}{3}  + \dfrac{\pi}{6}

\rm \:  =  \:  \: \:\dfrac{2\pi + \pi}{6}

\rm \:  =  \:  \: \:\dfrac{3\pi }{6}

\rm \:  =  \:  \: \:\dfrac{\pi }{2}

Hence,

\bf :\longmapsto\: {sin}^{ - 1}\bigg(sin\dfrac{2\pi}{3} \bigg) +  {tan}^{ - 1}\bigg(tan\dfrac{7\pi}{6} \bigg) =  \dfrac{\pi}{2}

Similar questions