find the principle value
Answers
principal values of
1) sin^(-1 )( 1/ 2 )+ cos^(-1 ) (1 / 2)
2) sin^(-1 )(sin (3π / 5 ))
Q1) sin^(-1 )( 1/ 2 )+ cos^(-1 ) (1/2)
for, sin^(-1)(1/2)
let , sin^(-1)(1/2 ) = y
sin y = 1/2 =cos π/6
principal value branch for sin^(-1) is [ -π/2 , π / 2] and -π/2 < π /6 < π/ 2
so, y = π / 6
sin^(-1 ) ( 1/ 2) = π / 6 ..............(1)
Now,
for, cos^( -1)(1/ 2)
let, cos^(-1)(1/2) = x
cosx = 1/2 = cos π/3
principal value branch for cos^(-1) is [ 0 , π ] and 0 < π /3 < π
x = π / 3
cos^(- 1) ( 1/2 ) = π /3 ...............(2)
from (1) and (2)
sin ^( -1 )( 1/ 3) + cos^( -1)( 1 / 2)
= (π / 6) + ( π / 3 )
=(( 3π + 6π ) / 18 )
= ( 9π / 18 )
= π / 2
principal value of sin^(-1 )( 1/ 2 )+ cos^(-1 ) (1 / 2) is
__________________________________
Q2) sin^(-1 )(sin (3π / 5 ))
As we know the range of principle value branch of sin^( -1 ) is [-π /2 , π / 2]
let us suppose,
sin^( -1 ) ( sin( 3π /5) )
= sin^( -1 ) [ sin ((5π - 2π) / 5 )]
= sin^( -1 ) [ sin ( π -( 2π / 5))]
Therefor,
sin^( -1) ( sin 3π /5 )
= sin^(-1 ) (sin (2π /5))
we know, ( 2π / 5 )€ [ -π / 2 , π /2 ]
sin^( -1 )( sin (3π/5 )) = 2π / 5
Therefor the principle value of
sin^(-1 )(sin (3π / 5 )) is
__________________________________
welcome to the concept of inverse trigonometry......
⏩ I hope it help you ❤️