Math, asked by avnsiva5454gmailcom, 10 months ago


find the problem very challenging ​

Attachments:

Answers

Answered by BrainlyPopularman
20

QUESTION :

Find the transformation of equation of x² + y² + 2x - 4y + 1 = 0 When the origin is shifted to the point (-1 , 2).

ANSWER :

GIVEN :

• Equation of curve => x² + y² + 2x - 4y + 1 = 0

• Origin shifted to the point ( -1 , 2).

TO FIND :

• Shifted from of curve = ?

SOLUTION :

 \\ \: { \huge{.}} \: { \bold{(x,y) \dashrightarrow \: old \:  \: coordinate}}  \\

 \\ \: { \huge{.}} \: { \bold{(X,Y) \dashrightarrow \: new \:  \: coordinate}}  \\

• Relation between old and new coordinate –

 \\ \implies { \bold{(x,y) = (X+ h, Y+ k)}}  \\

• So that –

 \\ \: { \huge{.}} \: { \bold{(h,k)  =  \: ( - 1,2)}}  \\

• So that –

 \\ \implies { \bold{(x,y) = (X - 1, Y+ 2)}}  \\

• Now put in equation –

 \\ \implies { \bold{ {x}^{2}  +  {y}^{2} + 2x  - 4y + 1 = 0}}  \\

 \\ \implies { \bold{ {(X - 1)}^{2}  +  {(Y+ 2)}^{2} + 2(X - 1)  - 4(Y+ 2) + 1 = 0}}  \\

 \\ \implies { \bold{ {X}^{2} + 1 - 2X +  {Y}^{2} + 4 + 4Y+ 2X -2  - 4Y - 8+ 1 = 0}}  \\

 \\ \implies { \bold{ {X}^{2} + 1  +  {Y}^{2} + 4 -2  - 8+ 1 = 0}}  \\

 \\ \implies { \bold{ {X}^{2} +  {Y}^{2} + 5-10= 0}}  \\

 \\ \implies { \bold{ {X}^{2} +  {Y}^{2}  - 5= 0}}  \\

 \\ \implies  \large{ \boxed{ \bold{ {X}^{2} +  {Y}^{2}  =  5}}}  \\

Similar questions