Find the product
1) (x² - z²) × (z+y)
2) (5x² - 2xy + 3y²) × 12xy²
3) (9x - x -15) × (x + 4)
Answers
Answer:
Step-by-step explanation:
An identity is an equality which is true for all values of a variable in the equality.
(a + b)² = a² + 2ab + b²
In an identity the right hand side expression is called expanded form of the left hand side expression.
----------------------------------------------------------------------------------------------------
Solution:
(i) 9x² + 6xy + y²
=(3x)²+(2×3x×y)+ y2
Using identity,
[(a + b)²= a² + 2ab +b² ]
Here, a = 3x & b = y
9x² + 6xy + y²
= (3x)² + (2×3x×y) +y²
= (3x + y)²
=(3x + y) (3x + y)
(ii) 4y² – 4y + 1
= (2y)² –(2×2y×1) +1²
Using identity,
[(a – b)²= a²² –2ab +b² ]
Here, a = 2y & b = 1
4y² – 4y + 1
= (2y)² – (2×2y×1) +1²
= (2y-1)²
=(2y – 1) (2y – 1)
iii) x²- y²/100
= x² – (y/10)²
Using identity,
[a²–b²=(a + b) (a – b)]
Here, a = x & b = (y/10)
x²– y²/100
= x² – (y/10)²
= (x– y/10) (x+ y/10)
Answer:
This is helpful for you..
Hope this is helpful for you..☺