Math, asked by nrpatawari, 1 year ago

Find the product(2x+y)(2x-y)4x^2+y^2)

Answers

Answered by ashishks1912
13

GIVEN :

Find the product of the expression (2x+y)(2x-y)(4x^2+y^2)

TO FIND :

The product of the given expression.

SOLUTION :

Given expression is  (2x+y)(2x-y)(4x^2+y^2)

Solving the given expression as below :

(2x+y)(2x-y)(4x^2+y^2)

=[(2x+y)(2x-y)](4x^2+y^2)

By using the Algebraic identity :

(a+b)(a-b)=a^2-b^2

Here the values are a=2x and b = y

=[(2x)^2-y^2](4x^2+y^2)

By using the property of exponents :

(ab)^m=a^mb^m

=[2^2x^2-y^2](4x^2+y^2)

=(4x^2-y^2)(4x^2+y^2)

By using the Algebraic identity :

(a+b)(a-b)=a^2-b^2

Here a=4x^2 and b=y^2

=[(4x^2)^2-(y^2)^2]

By using the property of exponents :

(ab)^m=a^mb^m

=4^2(x^2)^2-(y^2)^2

By using the property of exponents :

(a^m)^n=a^{mn}

=16x^4-y^4

(2x+y)(2x-y)(4x^2+y^2)=16x^4-y^4

∴ the product for the given expression (2x+y)(2x-y)(4x^2+y^2) is 16x^4-y^4

(2x+y)(2x-y)(4x^2+y^2)=16x^4-y^4

Answered by enggmonika
5

Given: (2x+y)(2x-y)4x^2+y^2)

To find: Product of (2x+y)(2x-y)4x^2+y^2)

Solution:

                         (2x+y)(2x-y)4x^2+y^2)   ....................................(eqn 1)

Step 1:

we  will solve the expression in parts.

Firstly we solve (2x + y) (2x - y)

here we can use the formula:

                            (a +b) (a–b) = a² – b ²............(eqn 2)

                here,     a = 2x,  b = y

so put these values of a and b in eqn 2, we get:

                            = (2x)² – (y )²

                            = 4x² – y²

means (2x + y) (2x - y)  = = 4x² – y²

step 2:

put the value of (2x + y) (2x - y)  in eqn 1, we get

                            (4x² – y² ) (4x² + y²)    ..................(eqn 3).

Now solve this eqn 3,  again by using the same formula:

                             (a +b) (a–b) = a² – b²

              Here,    a = 4x² and b = y²

                            = (4x²)² – (y²)²

                           = 16 x⁴ – y⁴

Answer: so the final answer is = 16 x⁴ – y⁴

Similar questions