find the product
(2xy+3x)(4x^2y^2-6xyz+9z^2)
Answers
Step-by-step explanation:
Given find the product
(2xy+3x)(4x^2y^2-6xyz+9z^2)
- We need to find the product of the given algebraic expression.
- So we need to multiply each term with the other term
- So (2xy + 3x) (4x^2y^2 – 6 xyz + 9 z^2)
- So 2xy x 4x^2y^2 – 2xy x 6xyz + 2xy x 9z^2 + 3x x 4x^2y^2 – 3x x 6 xyz + 3x x 9z^2
- = 8x^3y^3 – 12 x^2y^2 z + 18 xyz^2 + 12x^3y^2 – 18 x^2yz + 27xz^2
- If the question is (2x – y + 3z)(4x^2 + y^2 + 9z^2 + 2xy + 3yz – 6xz)
- This is in the form of a^3 + b^3 + c^3 – 3abc
- 2x^3 + (-y)^3 + 3z^3 - 3(2x)(-y)(3z)
- 2x^3 - y^3 + 3z^3 + 18 xyz
Reference link will be
https://brainly.in/question/3955351
Given : (2xy+3z)(4x²y²-6xyz+9z²)
To find : Product
Solution:
Correct Question is
(2xy+3z)(4x²y²-6xyz+9z²)
= (2xy+3z)( (2xy)²-2xy*3z+ (3z)²)
using (a + b) (a² - ab + b²) = a³ + b³
a = 2xy
b = 3z
= (2xy)³ + (3z)³
= 8x³y³ + 27z³
(2xy+3z)(4x²y²-6xyz+9z²) = 8x³y³ + 27z³
Direct multiplication method
(2xy+3z)(4x²y²-6xyz+9z²)
= 2xy(4x²y²-6xyz+9z²) + 3z(4x²y²-6xyz+9z²)
= 8x³y³ - 12x²y²z + 18xyz² + 12x²y²z - 18xyz² + 27z³
= 8x³y³ + 27z³
Learn more:
find the value of 64xcube--125ycube iif 4x-5y=16 annd xy=12 ...
https://brainly.in/question/7538875
If a + b + c = 1, a2+b2+c2=9, a3+b3+c3=1 find 1/a + 1/b + 1/c
https://brainly.in/question/11392304