Math, asked by adharshm7591, 1 year ago

Find the product(a-b-c)(a2+b2+c2+ab-bc+ca)

Answers

Answered by Rakeshsah
52
(a-b-c)(a2+b2+c2+ab-bc+ca) =a3+ab2+ac2+a2b-abc+a2c-a2b-b3-bc2-ab2-b2c-abc-a2c-cb2-c3-abc-bc2-c2a=a3-b3-c3-2bc2-2b2c-3abc
Answered by mysticd
63

Answer:

(a-b-c)(a²+b²+c²+ab-bc+ca)

=a³-b³-c³-3abc

Step-by-step explanation:

we know the algebraic identity:

(x+y+z)(++-xy-yz-zx)

=x³++-3xyz--(1)

Now,

we have ,

(a-b-c)(+++ab-bc+ca)

=[a+(-b)+(-c)][+(-b)²+(-c)²-a(-b)-(-b)(-c)-(-c)a]

= +(-b)³+(-c)³-3a(-b)(-c)

= -b³-c³-3abc /* From (1)

Therefore,

(a-b-c)(a²+b²+c²+ab-bc+ca)

=a³-b³-c³-3abc

•••♪

Similar questions
Math, 8 months ago