Math, asked by vijaydhaka, 1 year ago

. Find the product and verify the result for x =
y = 2 of the following polynomials:
(5x + 3y) (5x – 3y) (25x² + 9y²)​

Answers

Answered by jitekumar4201
3

Answer:

(5x + 3y)(5x - 3y)(25x^{2}+9y^{2}) = 625x^{4} - 81y^{4}

625x^{4} - 81y^{4} = 4352

Step-by-step explanation:

We have-

(5x + 3y)(5x - 3y)(25x^{2}+9y^{2})

We know that-

(a+b)(a-b) = a^{2}-b^{2}

So, (5x + 3y)(5x - 3y)(25x^{2}+9y^{2})

= [(5x)^{2} -(3y)^{2}](25x^{2}+9y^{2})

= (25x^{2}-9y^{2})(25x^{2}+9y^{2})

Again, (a+b)(a-b) = a^{2}-b^{2}

= (25x^{2})^{2} - (9y^{2})^{2}

= 625x^{4} - 81y^{4}

Hence, (5x + 3y)(5x - 3y)(25x^{2}+9y^{2}) = 625x^{4} - 81y^{4}

Now x = 2 and y = 2

625x^{4} - 81y^{4} = 625(2)^{4} - 81(2)^{4}

                             = 625 \times16 - 81 \times16

                             = 5000 - 648

625x^{4} - 81y^{4} = 4352

Similar questions