find the product by using a suitable identity.
(x + 5) (x + 4)
(a + 3) (a + 6)
(x-9)(x+7)
Answers
Answer:
use the identity (x+a)(x+b)=x^2-xb-ax-ab.... u'll arrive with the answer
hope this helps u....
Answer:
Using suitable algebraic identities, find the product
Using suitable algebraic identities, find the product(A) (x+5)(x−5)
Using suitable algebraic identities, find the product(A) (x+5)(x−5)(B) (x−5)(x+5)
Using suitable algebraic identities, find the product(A) (x+5)(x−5)(B) (x−5)(x+5)(C) (3x+5)(3x+5)
Using suitable algebraic identities, find the product(A) (x+5)(x−5)(B) (x−5)(x+5)(C) (3x+5)(3x+5)(D) (x−1)(x−6)
Answer
(A)(x+5)(x−5)=x
(A)(x+5)(x−5)=x 2
(A)(x+5)(x−5)=x 2 −5
(A)(x+5)(x−5)=x 2 −5 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5)
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x)
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b)
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x(D)(x−1)(x−6)=x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x(D)(x−1)(x−6)=x 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x(D)(x−1)(x−6)=x 2 −6x−x+6
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x(D)(x−1)(x−6)=x 2 −6x−x+6=x
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x(D)(x−1)(x−6)=x 2 −6x−x+6=x 2
(A)(x+5)(x−5)=x 2 −5 2 [∵a 2 −b 2 =(a−b)(a+b)]=x 2 −25(B)(x−5)(x+5)=x 2 −5 2 =x 2 −25(C)(3x+5)(3x+5)=(3x+5) 2 (3x) 2 +5 2 +2.3x.5 [∵(a+b) 2 =a 2 +b 2 +2ab]=9x 2 +25+30x(D)(x−1)(x−6)=x 2 −6x−x+6=x 2 −7x+6