Find the product in each of the following by vertical method (mn+ m2n-mn2) ( m2-n2)
Answers
Answer:
Product of (m−n)(m
Product of (m−n)(m 2
Product of (m−n)(m 2 +mn+n
Product of (m−n)(m 2 +mn+n 2
Product of (m−n)(m 2 +mn+n 2 )
Product of (m−n)(m 2 +mn+n 2 )=m(m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3 Hence, the answer is m
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3 Hence, the answer is m 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3 Hence, the answer is m 3 −n
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3 Hence, the answer is m 3 −n 3
Product of (m−n)(m 2 +mn+n 2 )=m(m 2 +mn+n 2 )−n(m 2 +mn+n 2 )=m 3 +m 2 n+mn 2 −m 2 n−mn 2 −n 3 =m 3 −n 3 Hence, the answer is m 3 −n 3 .
Answer:
ij
Step-by-step explanation:
jbhbbbbbbbbbjwjwjrnirjrjrrirjrjjrjrtrejejrjrjrnrntnfjfntirjtjjtttjtjtjtjtjtfj