Find the product of (1/2x³)(-10x)(1/5x²) and verify the result for x=1
Answers
Step-by-step explanation:
Step-by-step explanation:
\left(\frac{1}{2x^{3}}\right) (-10x) \left( \frac{1}{5x^{2}}\right)(
2x
3
1
)(−10x)(
5x
2
1
)
\begin{gathered} = \left( \frac{-10x}{2x^{3}\times 5x^{2}}\right)\\= \left( \frac{-10x}{10x^{3+2}}\right) \\= \frac{ -1}{x^{5-1}}\\= \frac{-1}{x^{4}}\end{gathered}
=(
2x
3
×5x
2
−10x
)
=(
10x
3+2
−10x
)
=
x
5−1
−1
=
x
4
−1
Therefore.,
\red {\left(\frac{1}{2x^{3}}\right) (-10x) \left( \frac{1}{5x^{2}}\right)} \green {= \frac{-1}{x^{4}}}(
2x
3
1
)(−10x)(
5x
2
1
)=
x
4
−1
/* Substitute x = 1 in above equation , we get
\begin{gathered} LHS = \left(\frac{1}{2\times 1^{3}}\right) (-10\times 1) \left( \frac{1}{5\times 1^{2}}\right)\\= -1 \end{gathered}
LHS=(
2×1
3
1
)(−10×1)(
5×1
2
1
)
=−1
RHS = \frac{ -1}{1^{4}} = -1RHS=
1
4
−1
=−1
LHS = RHSLHS=RHS