Math, asked by renukamadhuriji, 1 month ago

Find the product of (1/2x³)(-10x)(1/5x²) and verify the result for x=1​

Answers

Answered by sheebakhan8103
2

Step-by-step explanation:

Step-by-step explanation:

\left(\frac{1}{2x^{3}}\right) (-10x) \left( \frac{1}{5x^{2}}\right)(

2x

3

1

)(−10x)(

5x

2

1

)

\begin{gathered} = \left( \frac{-10x}{2x^{3}\times 5x^{2}}\right)\\= \left( \frac{-10x}{10x^{3+2}}\right) \\= \frac{ -1}{x^{5-1}}\\= \frac{-1}{x^{4}}\end{gathered}

=(

2x

3

×5x

2

−10x

)

=(

10x

3+2

−10x

)

=

x

5−1

−1

=

x

4

−1

Therefore.,

\red {\left(\frac{1}{2x^{3}}\right) (-10x) \left( \frac{1}{5x^{2}}\right)} \green {= \frac{-1}{x^{4}}}(

2x

3

1

)(−10x)(

5x

2

1

)=

x

4

−1

/* Substitute x = 1 in above equation , we get

\begin{gathered} LHS = \left(\frac{1}{2\times 1^{3}}\right) (-10\times 1) \left( \frac{1}{5\times 1^{2}}\right)\\= -1 \end{gathered}

LHS=(

2×1

3

1

)(−10×1)(

5×1

2

1

)

=−1

RHS = \frac{ -1}{1^{4}} = -1RHS=

1

4

−1

=−1

LHS = RHSLHS=RHS

Similar questions