Math, asked by ritikasudan, 9 months ago

find the product of (root 3/5 + root 5/2)and (root 5 + root 2)​

Answers

Answered by vashishtmanjeet1
20

Answer:

Step-by-step explanation:

You can rationalize the denominator for further simplification....

Attachments:
Answered by smithasijotsl
3

Answer:

The product of (\frac{\sqrt{3} }{\sqrt{5} } +\frac{\sqrt{5} }{\sqrt{2} })  and √5+√2 = √3 +√5 +  \frac{\sqrt{30} }{5}  + \frac{5\sqrt{2}  }{2 }

Step-by-step explanation:

Given two irrational numbers

(\frac{\sqrt{3} }{\sqrt{5} } +\frac{\sqrt{5} }{\sqrt{2} })  and √5+√2

To find,

The product of the given two numbers

Recall the property

The distributive property of integers is given by

a(b+c) = a×b+ a×c

Solution:

(\frac{\sqrt{3} }{\sqrt{5} } +\frac{\sqrt{5} }{\sqrt{2} }) ×(√5+√2)

Applying distributive property we get

=  \frac{\sqrt{3} }{\sqrt{5} } (√5+√2) +\frac{\sqrt{5} }{\sqrt{2} }×(√5+√2)

Again applying distributive property we get

=  \frac{\sqrt{3} }{\sqrt{5} } ×√5+  \frac{\sqrt{3} }{\sqrt{5} } ×√2) +\frac{\sqrt{5} }{\sqrt{2} }×√5++\frac{\sqrt{5} }{\sqrt{2} }×√2

= √3 + \frac{\sqrt{6} }{\sqrt{5} } + \frac{5 }{\sqrt{2} } + √5

= √3 +√5 +  \frac{\sqrt{6} }{\sqrt{5} } ×\frac{\sqrt{5} }{\sqrt{5} } + \frac{5 }{\sqrt{2} } ×\frac{\sqrt{2} }{\sqrt{2} }

= √3 +√5 +  \frac{\sqrt{30} }{5}  + \frac{5\sqrt{2}  }{2 }

∴ The product of (\frac{\sqrt{3} }{\sqrt{5} } +\frac{\sqrt{5} }{\sqrt{2} })  and √5+√2 = √3 +√5 +  \frac{\sqrt{30} }{5}  + \frac{5\sqrt{2}  }{2 }

#SPJ2

Similar questions