Math, asked by Anonymous, 7 months ago

Find the product of
 \bf ( - \frac{10}{3} {pq}^{3} ) \times ( \frac{6}{5} {p}^{3} q)
◉Note:
☞Need Verified Answer.
☞Spammers stay away.​
☞Explain briefly with correct steps.

Answers

Answered by Anonymous
19

Given:

  \sf\bull ( - \frac{10}{3} {pq}^{3} ) \times ( \frac{6}{5} {p}^{3} q)

Find:

 \sf  Calculate \: the \: product \: of :   \\   \sf( - \frac{10}{3} {pq}^{3} ) \times ( \frac{6}{5} {p}^{3} q)

Solution:

Here,

\underline{\boxed{\sf \to( - \frac{10}{3} {pq}^{3} ) \times ( \frac{6}{5} {p}^{3} q)}}

Now, let's find it's product✒️

  \sf :\implies( - \frac{10}{3} {pq}^{3} ) \times ( \frac{6}{5} {p}^{3} q) \\  \\  \\ \sf :\implies( - \frac{10}{3}  \times  \frac{6}{5} ) \times (p {q}^{3}  \times  {p}^{3}q )\\   \\ \\

\sf we, know \: that\quad {p}^{2} \times {p}^{2} = {p}^{2+2} = {p}^{4} \:So, \: by \: using \: this \\ \\ \\

\sf :\implies( - 4)( {p}^{3+1}  {q}^{3+1} )\\ \\   \\

\sf :\implies - 4 {p}^{4}  {q}^{4}

Hence, the required answer will be -4p⁴q.

Answered by Anonymous
32

Answer :

➥ Product = -4p⁴q⁴

Given :

 \sf \bigg( - \dfrac{10}{3} {pq}^{3}\bigg ) \times \bigg( \dfrac{6}{5} {p}^{3} q\bigg)

To Find :

➤ Product = ?

Required Solution :

 \tt{: \implies  \bigg( \dfrac{ - 10}{3} {pq}^{3} \bigg) \times   \bigg(\dfrac{6}{5} {p}^{3} q \bigg)}

 \tt{: \implies  \bigg( \dfrac{ \cancel{- 10}}{ \cancel{ \: 3 \: }} \bigg) \times \bigg( \dfrac{ \cancel{ \: 6 \: }}{ \cancel{ \: 5 \: }} \bigg) \times p \times  {p}^{3}  \times  {q}^{3}  \times q}

 \tt{: \implies \bigg(\dfrac{  - 2}{1} \bigg)  \times \bigg(\dfrac{ 2}{1} \bigg) \times {p}^{4}  {q}^{4} }

 \tt{: \implies  - 2 \times 2 \times {p}^{4}  {q}^{4}}

 \tt{: \implies  - 4\times {p}^{4}  {q}^{4}}

 \bf{: \implies  \underline{ \:  \:  \underline{   \:  \: - 4{p}^{4}  {q}^{4} \:  \: } \:  \: }}

Hence, the product is -4p⁴q⁴.

Similar questions