Math, asked by adityasainityyy27, 8 months ago

Find the product of the following binomials: 2 (x²-2) (x²+7)​

Answers

Answered by Anonymous
9

Step-by-step explanation:

2(x²-2)(x²+7)

(2x²-4)(x²+7)

2x²(x²+7)-4(x²+7)

2x⁴+14x²-4x²+28

2x⁴+10x²+28

Answered by Rohith200422
8

Question:

Find the product of the following binomials: 2 (x²-2) (x²+7).

To find:

★ To find the value of the given expression.

Answer:

 \underline{ \:  \underline{  \bold{ 2 {x}^{4}  + 10 {x}^{2}  - 28} } \: } \: is \: the \: answer.

Given:

An expression is given,

2( {x}^{2}  - 2)( {x}^{2}  + 7)

Step-by-step explanation:

 \sf2( {x}^{2}  - 2)( {x}^{2}  + 7)

\implies 2 \big[ { ({x}^{2} )}^{2}  + ( - 2 + 7){x}^{2}   + (7)( - 2) \big]

Here, we use the formula

 \boxed{(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab}

a = -2 , b = 7

\implies 2 \big[ {x}^{4}  + 5 {x}^{2}  - 14 \big]

 \implies \boxed{ 2 {x}^{4}  + 10 {x}^{2}  - 28}

 \therefore \underline{  \bold{ 2 {x}^{4}  + 10 {x}^{2}  - 28} } \: is \: the \: answer.

Formula used:

 \bigstar{(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab}

Formula to know:

 \bigstar {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

 \bigstar {(a  -  b)}^{2}  =  {a}^{2}   -  2ab +  {b}^{2}

 \bigstar  {a}^{2}  - { b}^{2}  =  (a + b)(a - b)

 \bigstar  {a}^{3}  + { b}^{3}  =  (a + b)( {a}^{2}  - ab +  {b}^{2}  )

 \bigstar  {a}^{3}   -  { b}^{3}  =  (a  -  b)( {a}^{2}   +  ab +  {b}^{2}  )

Similar questions