Math, asked by thirumalpalanichamy, 11 months ago

find the product of the polynomial : (3x-5y-4)(9x^2+25y^2+15xy+12x-20y+16)​

Answers

Answered by singhvandana42859
3

Answer:

(3x – 5y – 4)( 9x2 + 25 y2 + 15xy + 12x – 20y +16)

=(3x – 5y – 4)( 9x2 + 25 y2 + 16 + 15xy – 20y +12x)

=[3x + (– 5y) + (– 4)][ (3x) 2 + (– 5y)2 + (– 4)2-(3x) × (– 5y) – (– 5y) × (– 4) – (– 4) × (3x)]

= (3x)3 + (– 5y)3 + (– 4)3 – 3 × (3x) × (– 5y) × (– 4) 

[a3 + b3 + c3 – 3 abc = (a + b + c)( a2 + b2+ c2– ab – bc – ca)]

= 27x3 – 125y3 – 64 – 180xy..

Answered by Anirban26
3

Answer:

Putting the value of 3x=a, (-5y)=b and (-4)=c

(3x-5y-4) (9x²+25y²+15xy+12x-20y+16)

=(3x-5y-4) (9x²+25y²+16+15xy-20y+12x)

={(3x)+(-5y)+(-4)}{(3x)²+(-5y)²+(-4)²-(3x)-(-5y)-(-5y)(-4)-(-4)(3x)

=(a+b+c)(a²+b²+c²+ab-bc+ca)

=a³+b³+c³-3abc

=(3a)²m³+(-5y)³+(-4)³-3×(3x)(-5y)(-4)

=27x³-125y³-64-180xy

Step-by-step explanation:

Hope this helps you.

Similar questions