Math, asked by deepstorm, 1 year ago

Find the product of the roots of the quadratic equation 2x² + 7 - 4 = 0 .

Answers

Answered by niral
0

Answer:

Step-by-step explanation:

Step  1  :

Equation at the end of step  1  :

 (2x2 -  7x) -  4  = 0  

Step  2  :

Trying to factor by splitting the middle term

2.1     Factoring  2x2-7x-4  

The first term is,  2x2  its coefficient is  2 .

The middle term is,  -7x  its coefficient is  -7 .

The last term, "the constant", is  -4  

Step-1 : Multiply the coefficient of the first term by the constant   2 • -4 = -8  

Step-2 : Find two factors of  -8  whose sum equals the coefficient of the middle term, which is   -7 .

     -8    +    1    =    -7    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -8  and  1  

                    2x2 - 8x + 1x - 4

Step-4 : Add up the first 2 terms, pulling out like factors :

                   2x • (x-4)

             Add up the last 2 terms, pulling out common factors :

                    1 • (x-4)

Step-5 : Add up the four terms of step 4 :

                   (2x+1)  •  (x-4)

            Which is the desired factorization

Similar questions