Math, asked by arifapasha022, 11 months ago

Find the product of the zeros of a polynomial p(x) = x^2 + 2x − 8​

Answers

Answered by abireshu
4

Answer:

-8

Step-by-step explanation:

p(x)= x^2+2x-8

a=1,b=2,c=-8

product of zeroes = c/a = -8/1= -8

sum of zeroes = -b/a = -2/1 = -2

hope it helps frnd..

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Product\:of\:zeroes=-8}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies  {x}^{2}   + 2x - 8 = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Product \: of \: zeroes = ?

• According to given question :

 \tt \circ \: Let \: zeroes \: be \:  \alpha  \: and \:  \beta  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Product \: of \: zeroes =  \frac{c}{a}  \\  \\ \tt:  \implies  \alpha  \beta  =  \frac{ - 8}{1}  \\  \\  \green{\tt:  \implies  \alpha  \beta  =  - 8} \\  \\  \bold{Alternate \: method : } \\ \tt:  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \tt:  \implies x =  \frac{ - 2 \pm \sqrt{ {2}^{2}  - 4 \times 1 \times ( -8)} }{2 \times 1}  \\  \\ \tt:  \implies x =  \frac{ - 2 \pm \sqrt{4 + 32} }{2}  \\  \\ \tt:  \implies x =  \frac{ - 2 \pm6}{2}  \\  \\  \green{\tt:  \implies x =  - 4 \: and \: 2} \\  \\  \tt \circ \:  \alpha  =  - 4 \\  \\  \tt \circ \:  \beta  =  2 \\  \\  \bold{For \: Product \: of \: zeroes} \\ \tt:  \implies  \alpha  \beta   =  - 4 \times 2 \\  \\  \green{\tt:  \implies  \alpha  \beta  =  - 8}

Similar questions