find the product of (x-1/x),(x+1/x),(x^2+1/x^2),(x^2+1/x^2)and (x^4-1/x^4)
Answers
Answered by
4
Answer :
Now,
(x - 1/x) (x + 1/x) (x² + 1/x²) (x² + 1/x²) (x^4 - 1/x^4)
= (x² - 1/x²) (x² + 1/x²) (x² + 1/x²) (x^4 - 1/x^4)
= (x^4 - 1/x^4) (x² + 1/x²) (x^4 - 1/x^4)
= (x² + 1/x²) (x^4 - 1/x^4)²
= (x² + 1/x²) (x^8 + 1/x^8 - 2)
= x^10 + 1/x^6 - 2x² + x^6 + 1/x^10 - 2/x²,
which is the required product of the given terms.
#MarkAsBrainliest
Now,
(x - 1/x) (x + 1/x) (x² + 1/x²) (x² + 1/x²) (x^4 - 1/x^4)
= (x² - 1/x²) (x² + 1/x²) (x² + 1/x²) (x^4 - 1/x^4)
= (x^4 - 1/x^4) (x² + 1/x²) (x^4 - 1/x^4)
= (x² + 1/x²) (x^4 - 1/x^4)²
= (x² + 1/x²) (x^8 + 1/x^8 - 2)
= x^10 + 1/x^6 - 2x² + x^6 + 1/x^10 - 2/x²,
which is the required product of the given terms.
#MarkAsBrainliest
Answered by
1
Answer:
It's 2 for both
Step-by-step explanation:
1) x^2 + 1/ x^2 = { x + 1/ x} ^2 - 2
= (2)^2 - 2
= 4 - 2 = 2
2) x^4 + 1/x^4 = { x^2 + 1/x^2}^2 - 2
= (2)^2 - 2
= 4-2 = 2
thanky u
Similar questions